Author
Listed:
- Chun-Hua Chien
- Po-Yen Chen
- Amy J. C. Trappey
- Charles V. Trappey
- Zeljko Stevic
Abstract
Electric-mechanical equipment manufacturing industries focus on the implementation of intelligent manufacturing systems in order to enhance customer services for highly customized machines with high-profit margins such as electric power transformers. Intelligent manufacturing consists in using supply chain data that are integrated for smart decision making during the production life cycle. This research, in cooperation with a large electric power transformer manufacturer, provides an overview of critical intelligent manufacturing (IM) technologies. An ontology schema forms the terminology relationships needed to build two intelligent supply chain management (SCM) modules for the IM system demonstration. The two core modules proposed in this research are the intelligent supplier selection and component ordering module and the product quality prediction module. The intelligent supplier selection and component ordering module dispatches orders that match the best options of suppliers based on combined analytic hierarchy process (AHP) analysis and multiobjective integer optimization. In the case study, the intelligent supplier selection and component ordering module demonstrates several acceptable Pareto solutions based on strict constraints, which is a very challenging task for decision makers without assistance. The second module is the product quality prediction module which uses multivariate regression and ARIMA to predict the quality of the finished products. Results show that the R square values are very close to 1. The module shortens the time for the company to accurately judge whether the two semifinished iron cores for the product meet the quality requirements. The component supplier selection module and the finished product quality prediction module developed in this research can be extended to other IM systems for general high-end equipment manufacturers using mass customization.
Suggested Citation
Chun-Hua Chien & Po-Yen Chen & Amy J. C. Trappey & Charles V. Trappey & Zeljko Stevic, 2022.
"Intelligent Supply Chain Management Modules Enabling Advanced Manufacturing for the Electric-Mechanical Equipment Industry,"
Complexity, Hindawi, vol. 2022, pages 1-20, January.
Handle:
RePEc:hin:complx:8221706
DOI: 10.1155/2022/8221706
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:8221706. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.