IDEAS home Printed from https://ideas.repec.org/a/hin/complx/7232907.html
   My bibliography  Save this article

Homotopy Analysis Method for Three Types of Fractional Partial Differential Equations

Author

Listed:
  • Haidong Qu
  • Zihang She
  • Xuan Liu

Abstract

In this paper, three types of fractional order partial differential equations, including the fractional Cauchy–Riemann equation, fractional acoustic wave equation, and two-dimensional space partial differential equation with time-fractional-order, are considered, and these models are obtained from the standard equations by replacing an integer-order derivative with a fractional-order derivative in Caputo sense. Firstly, we discuss the fractional integral and differential properties of several functions which are derived from the Mittag-Leffler function. Secondly, by using the homotopy analysis method, the exact solutions for fractional order models mentioned above with suitable initial boundary conditions are obtained. Finally, we draw the computer graphics of the exact solutions, the approximate solutions (truncation of finite terms), and absolute errors in the limited area, which show that the effectiveness of the homotopy analysis method for solving fractional order partial differential equations.

Suggested Citation

  • Haidong Qu & Zihang She & Xuan Liu, 2020. "Homotopy Analysis Method for Three Types of Fractional Partial Differential Equations," Complexity, Hindawi, vol. 2020, pages 1-13, July.
  • Handle: RePEc:hin:complx:7232907
    DOI: 10.1155/2020/7232907
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/8503/2020/7232907.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/8503/2020/7232907.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2020/7232907?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liaqat, Muhammad Imran & Khan, Adnan & Akgül, Ali, 2022. "Adaptation on power series method with conformable operator for solving fractional order systems of nonlinear partial differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    2. Nehad Ali Shah & Ioannis Dassios & Essam R. El-Zahar & Jae Dong Chung, 2022. "An Efficient Technique of Fractional-Order Physical Models Involving ρ -Laplace Transform," Mathematics, MDPI, vol. 10(5), pages 1-16, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:7232907. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.