IDEAS home Printed from https://ideas.repec.org/a/hin/complx/7041564.html
   My bibliography  Save this article

Nonlinear Structural Fusion for Multiplex Network

Author

Listed:
  • Nianwen Ning
  • Feiyu Long
  • Chunchun Wang
  • Youjie Zhang
  • Yilin Yang
  • Bin Wu

Abstract

Many real-world complex systems have multiple types of relations between their components, and they are popularly modeled as multiplex networks with each type of relation as one layer. Since the fusion analysis of multiplex networks can provide a comprehensive insight, the structural information fusion of multiplex networks has become a crucial issue. However, most of these existing data fusion methods are inappropriate for researchers to apply to complex network analysis directly. The feature-based fusion methods ignore the sharing and complementarity of interlayer structural information. To tackle this problem, we propose a multiplex network structural fusion (MNSF) model, which can construct a network with comprehensive information. It is composed of two modules: the network feature extraction (NFE) module and the network structural fusion (NSF) module. (1) In NFE, MNSF first extracts a low-dimensional vector representation of a node from each layer. Then, we construct a node similarity network based on embedding matrices and K-D tree algorithm. (2) In NSF, we present a nonlinear enhanced iterative fusion (EIF) strategy. EIF can strengthen high-weight edges presented in one (i.e., complementary information) or more (i.e., shared information) networks and weaken low-weight edges (i.e., redundant information). The retention of low-weight edges shared by all layers depends on the tightness of connections of their K-order proximity. The usage of higher-order proximity in EIF alleviates the dependence on the quality of node embedding. Besides, the fused network can be easily exploited by traditional single-layer network analysis methods. Experiments on real-world networks demonstrate that MNSF outperforms the state-of-the-art methods in tasks link prediction and shared community detection.

Suggested Citation

  • Nianwen Ning & Feiyu Long & Chunchun Wang & Youjie Zhang & Yilin Yang & Bin Wu, 2020. "Nonlinear Structural Fusion for Multiplex Network," Complexity, Hindawi, vol. 2020, pages 1-17, July.
  • Handle: RePEc:hin:complx:7041564
    DOI: 10.1155/2020/7041564
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/8503/2020/7041564.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/8503/2020/7041564.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2020/7041564?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:7041564. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.