IDEAS home Printed from https://ideas.repec.org/a/hin/complx/6649992.html
   My bibliography  Save this article

Innovation Diffusion on Higher-Order Networks

Author

Listed:
  • Maria Letizia Bertotti
  • Nicola Cinardi

Abstract

Higher-order networks (HON) provide a suitable frame to model connections that involve groups of nodes—representing interacting individuals or other types of agents—of different sizes. They allow us to take into account not only pairwise interactions but also connections binding three or four or any other natural number of nodes together. Motivated by the consideration that the existence of higher-order interactions may impact, among others, the process of diffusion of new products, the spreading of ideas, and the adoption of practices, we propose and study here a version of the celebrated Bass model on top of HON. We define a mean-field equation that contains terms up to the order at which interactions might make a significant contribution. The impact of the paper is twofold. By considering and comparing different maximal orders of interaction and analyzing how they influence certain times that are important in the diffusion process, we show that HON indeed has an impact and yields a greater accuracy in modeling results. The second contribution of the paper, also of interest for future works, consists of a novel procedure we develop for the construction of HON with assigned generalized mean degrees. We also show that the behavior of the take-off time with the size of the orders contribution undergoes a phase transition where the link density of the network and the related higher-order structures act as the characterizing condition for one phase or the other.

Suggested Citation

  • Maria Letizia Bertotti & Nicola Cinardi, 2025. "Innovation Diffusion on Higher-Order Networks," Complexity, Hindawi, vol. 2025, pages 1-13, September.
  • Handle: RePEc:hin:complx:6649992
    DOI: 10.1155/cplx/6649992
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/complexity/2025/6649992.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/complexity/2025/6649992.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/cplx/6649992?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:6649992. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.