IDEAS home Printed from https://ideas.repec.org/a/hin/complx/5511802.html
   My bibliography  Save this article

Forecasting Volatility of Stock Index: Deep Learning Model with Likelihood-Based Loss Function

Author

Listed:
  • Fang Jia
  • Boli Yang
  • Benjamin Miranda Tabak

Abstract

Volatility is widely used in different financial areas, and forecasting the volatility of financial assets can be valuable. In this paper, we use deep neural network (DNN) and long short-term memory (LSTM) model to forecast the volatility of stock index. Most related research studies use distance loss function to train the machine learning models, and they gain two disadvantages. The first one is that they introduce errors when using estimated volatility to be the forecasting target, and the second one is that their models cannot be compared to econometric models fairly. To solve these two problems, we further introduce a likelihood-based loss function to train the deep learning models and test all the models by the likelihood of the test sample. The results show that our deep learning models with likelihood-based loss function can forecast volatility more precisely than the econometric model and the deep learning models with distance loss function, and the LSTM model is the better one in the two deep learning models with likelihood-based loss function.

Suggested Citation

  • Fang Jia & Boli Yang & Benjamin Miranda Tabak, 2021. "Forecasting Volatility of Stock Index: Deep Learning Model with Likelihood-Based Loss Function," Complexity, Hindawi, vol. 2021, pages 1-13, February.
  • Handle: RePEc:hin:complx:5511802
    DOI: 10.1155/2021/5511802
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/complexity/2021/5511802.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/complexity/2021/5511802.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2021/5511802?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Natalia Roszyk & Robert Ślepaczuk, 2024. "The Hybrid Forecast of S&P 500 Volatility ensembled from VIX, GARCH and LSTM models," Working Papers 2024-13, Faculty of Economic Sciences, University of Warsaw.
    2. Gunnarsson, Elias Søvik & Isern, Håkon Ramon & Kaloudis, Aristidis & Risstad, Morten & Vigdel, Benjamin & Westgaard, Sjur, 2024. "Prediction of realized volatility and implied volatility indices using AI and machine learning: A review," International Review of Financial Analysis, Elsevier, vol. 93(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:5511802. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.