IDEAS home Printed from https://ideas.repec.org/a/hin/complx/3049318.html
   My bibliography  Save this article

Fault Diagnosis of Rolling Bearing Based on a Novel Adaptive High-Order Local Projection Denoising Method

Author

Listed:
  • Rui Yuan
  • Yong Lv
  • Gangbing Song

Abstract

Rolling bearings are vital components in rotary machinery, and their operating condition affects the entire mechanical systems. As one of the most important denoising methods for nonlinear systems, local projection (LP) denoising method can be used to reduce noise effectively. Afterwards, high-order polynomials are utilized to estimate the centroid of the neighborhood to better preserve complete geometry of attractors; thus, high-order local projection (HLP) can improve noise reduction performance. This paper proposed an adaptive high-order local projection (AHLP) denoising method in the field of fault diagnosis of rolling bearings to deal with different kinds of vibration signals of faulty rolling bearings. Optimal orders can be selected corresponding to vibration signals of outer ring fault (ORF) and inner ring fault (IRF) rolling bearings, because they have different nonlinear geometric structures. The vibration signal model of faulty rolling bearing is adopted in numerical simulations, and the characteristic frequencies of simulated signals can be well extracted by the proposed method. Furthermore, two kinds of experimental data have been processed in application researches, and fault frequencies of ORF and IRF rolling bearings can be both clearly extracted by the proposed method. The theoretical derivation, numerical simulations, and application research can indicate that the proposed novel approach is promising in the field of fault diagnosis of rolling bearing.

Suggested Citation

  • Rui Yuan & Yong Lv & Gangbing Song, 2018. "Fault Diagnosis of Rolling Bearing Based on a Novel Adaptive High-Order Local Projection Denoising Method," Complexity, Hindawi, vol. 2018, pages 1-15, October.
  • Handle: RePEc:hin:complx:3049318
    DOI: 10.1155/2018/3049318
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/8503/2018/3049318.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/8503/2018/3049318.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2018/3049318?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wenlong Fu & Jiawen Tan & Xiaoyuan Zhang & Tie Chen & Kai Wang, 2019. "Blind Parameter Identification of MAR Model and Mutation Hybrid GWO-SCA Optimized SVM for Fault Diagnosis of Rotating Machinery," Complexity, Hindawi, vol. 2019, pages 1-17, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:3049318. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.