IDEAS home Printed from https://ideas.repec.org/a/hin/complx/2437737.html
   My bibliography  Save this article

Chimera State in the Network of Fractional-Order FitzHugh–Nagumo Neurons

Author

Listed:
  • Janarthanan Ramadoss
  • Sajedeh Aghababaei
  • Fatemeh Parastesh
  • Karthikeyan Rajagopal
  • Sajad Jafari
  • Iqtadar Hussain
  • Guillermo Huerta Cuellar

Abstract

The fractional calculus in the neuronal models provides the memory properties. In the fractional-order neuronal model, the dynamics of the neuron depends on the derivative order, which can produce various types of memory-dependent dynamics. In this paper, the behaviors of the coupled fractional-order FitzHugh–Nagumo neurons are investigated. The effects of the coupling strength and the derivative order are under consideration. It is revealed that the level of the synchronization is decreased by decreasing the derivative order, and the chimera state emerges for stronger couplings. Furthermore, the patterns of the formed chimeras rely on the order of the derivatives.

Suggested Citation

  • Janarthanan Ramadoss & Sajedeh Aghababaei & Fatemeh Parastesh & Karthikeyan Rajagopal & Sajad Jafari & Iqtadar Hussain & Guillermo Huerta Cuellar, 2021. "Chimera State in the Network of Fractional-Order FitzHugh–Nagumo Neurons," Complexity, Hindawi, vol. 2021, pages 1-9, June.
  • Handle: RePEc:hin:complx:2437737
    DOI: 10.1155/2021/2437737
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/complexity/2021/2437737.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/complexity/2021/2437737.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2021/2437737?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Echenausía-Monroy, J.L. & Gilardi-Velázquez, H.E. & Wang, Ning & Jaimes-Reátegui, R. & García-López, J.H. & Huerta-Cuellar, G., 2022. "Multistability route in a PWL multi-scroll system through fractional-order derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    2. Gayathri Vivekanandan & Mahtab Mehrabbeik & Hayder Natiq & Karthikeyan Rajagopal & Esteban Tlelo-Cuautle, 2022. "Fractional-Order Memristive Wilson Neuron Model: Dynamical Analysis and Synchronization Patterns," Mathematics, MDPI, vol. 10(16), pages 1-9, August.
    3. Ngueuteu Mbouna, S.G. & Banerjee, Tanmoy & Yamapi, René & Woafo, Paul, 2022. "Diverse chimera and symmetry-breaking patterns induced by fractional derivation effect in a network of Stuart-Landau oscillators," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:2437737. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.