IDEAS home Printed from https://ideas.repec.org/a/hin/complx/2087027.html
   My bibliography  Save this article

A Fault Analysis Method for Three-Phase Induction Motors Based on Spiking Neural P Systems

Author

Listed:
  • Zhu Huang
  • Tao Wang
  • Wei Liu
  • Luis Valencia-Cabrera
  • Mario J. Pérez-Jiménez
  • Pengpeng Li
  • Zong Woo Geem

Abstract

The fault prediction and abductive fault diagnosis of three-phase induction motors are of great importance for improving their working safety, reliability, and economy; however, it is difficult to succeed in solving these issues. This paper proposes a fault analysis method of motors based on modified fuzzy reasoning spiking neural P systems with real numbers (rMFRSNPSs) for fault prediction and abductive fault diagnosis. To achieve this goal, fault fuzzy production rules of three-phase induction motors are first proposed. Then, the rMFRSNPS is presented to model the rules, which provides an intuitive way for modelling the motors. Moreover, to realize the parallel data computing and information reasoning in the fault prediction and diagnosis process, three reasoning algorithms for the rMFRSNPS are proposed: the pulse value reasoning algorithm, the forward fault prediction reasoning algorithm, and the backward abductive fault diagnosis reasoning algorithm. Finally, some case studies are given, in order to verify the feasibility and effectiveness of the proposed method.

Suggested Citation

  • Zhu Huang & Tao Wang & Wei Liu & Luis Valencia-Cabrera & Mario J. Pérez-Jiménez & Pengpeng Li & Zong Woo Geem, 2021. "A Fault Analysis Method for Three-Phase Induction Motors Based on Spiking Neural P Systems," Complexity, Hindawi, vol. 2021, pages 1-19, January.
  • Handle: RePEc:hin:complx:2087027
    DOI: 10.1155/2021/2087027
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/complexity/2021/2087027.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/complexity/2021/2087027.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2021/2087027?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rahmad Syah & Afshin Davarpanah & Mahyuddin K. M. Nasution & Faisal Amri Tanjung & Meysam Majidi Nezhad & Mehdi Nesaht, 2021. "A Comprehensive Thermoeconomic Evaluation and Multi-Criteria Optimization of a Combined MCFC/TEG System," Sustainability, MDPI, vol. 13(23), pages 1-29, November.
    2. Yan Cao & Hamdi Ayed & Alibek Issakhov & Ndolane Sene & Belgacem Bouallegue, 2022. "Irreversibility analysis of induced swirl flow inside the pipes of flat-plate solar collector using dual tangential nozzles [The strain transfer mechanism of fiber Bragg grating sensor for extra la," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 17, pages 1851-1863.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:2087027. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.