IDEAS home Printed from https://ideas.repec.org/a/hin/complx/1898998.html
   My bibliography  Save this article

A Secure and Efficient Image Transmission Scheme Based on Two Chaotic Maps

Author

Listed:
  • Wei Feng
  • Jing Zhang
  • Zhentao Qin
  • Ahmed A. Abd El-Latif

Abstract

The application of multimedia sensors is widespread, and people need to transmit images more securely and efficiently. In this paper, an image transmission scheme based on two chaotic maps is proposed. The proposed scheme consists of two parts, secure image transmission between sensor nodes and sink nodes (SIT-SS) and secure image transmission between sensor nodes and receivers (SIT-SR). For resource-constrained environments, SIT-SS utilizes Tent-Logistic Map (TLM) to generate chaotic sequences and adopts TLM-Driven permutation and transformation to confuse image pixels. Then the cipher image is obtained through TLM-Driven two-dimensional compressed sensing. Compared with existing schemes, the secret key design of SIT-SS is more reasonable and requires fewer hardware resources. When sampling ratio is greater than 0.6, its image reconstruction quality has obvious advantages. For environments with huge security threats, SIT-SR adopts dynamic permutation and confusion based on discrete logarithms to confuse the image and exploits dynamic diffusion based on discrete logarithms to generate final cipher image. Similarly, compared with some existing schemes, the design of SIT-SR is more practical, and the statistical characteristics of the cipher image are better. Finally, extensive simulation tests confirm the superiority of the proposed scheme.

Suggested Citation

  • Wei Feng & Jing Zhang & Zhentao Qin & Ahmed A. Abd El-Latif, 2021. "A Secure and Efficient Image Transmission Scheme Based on Two Chaotic Maps," Complexity, Hindawi, vol. 2021, pages 1-19, November.
  • Handle: RePEc:hin:complx:1898998
    DOI: 10.1155/2021/1898998
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/complexity/2021/1898998.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/complexity/2021/1898998.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2021/1898998?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wei Feng & Xiangyu Zhao & Jing Zhang & Zhentao Qin & Junkun Zhang & Yigang He, 2022. "Image Encryption Algorithm Based on Plane-Level Image Filtering and Discrete Logarithmic Transform," Mathematics, MDPI, vol. 10(15), pages 1-24, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:1898998. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.