Author
Listed:
- Dina Mohamed
(Edinburgh Business School, Heriot-Watt University Dubai, Dubai P.O. Box 501745, United Arab Emirates)
- Adham Fayad
(Business Management, De Montfort University, Dubai Campus, Dubai P.O. Box 294345, United Arab Emirates)
- Abdel-Mohsen O. Mohamed
(Uberbinder Limited, Littlemore, Oxford OX4 4GP, UK)
- Moza T. Al Nahyan
(College of Business, Abu Dhabi University, Abu Dhabi P.O. Box 59911, United Arab Emirates)
Abstract
This paper analyses the role of electronic waste (E-waste) as a secondary source of critical and precious minerals, addressing the challenges and opportunities in transitioning towards a circular economy (CE) for electronics. The surging global demand for these essential materials, driven by technological advancements and renewable energy infrastructure, necessitates alternative supply strategies due to the depletion of natural reserves and the environmental degradation associated with primary mining. E-waste contains a rich concentration of valuable metals, such as gold, silver, and platinum, making its recovery a promising solution aligned with CE principles, which can mitigate environmental impacts and ensure long-term material availability. This paper examines the environmental, economic, and technological aspects of E-waste recovery, focusing on core processes such as physical and mechanical separation, pyrometallurgical, hydrometallurgical, bio-metallurgical, and electrochemical techniques. It explores innovative strategies to improve material recovery efficiency and sustainability, with consideration of evolving regulatory frameworks, technological advancements, and stakeholder engagement. The analysis highlights that e-waste, particularly printed circuit boards, can contain 40–800 times more gold than mined ore, with 1000–3000 g of gold per tonne compared to 5–10 g per tonne in traditional ores. Recovery costs using advanced E-waste recycling technologies range between $10,000–$20,000 USD per kilogram of gold, significantly lower than the $30,000–$50,000 USD per kilogram in primary mining. Globally, over 50 million tonnes of E-waste are generated annually, yet less than 20% is formally recycled. Efficient recycling methods can recover up to 95% of base and precious metals under optimized conditions. The paper argues that E-waste recycling presents a viable pathway to conserve critical raw materials, reduce environmental degradation, and enhance circular economic resilience. However, it also emphasizes persistent challenges—including high initial investment, technological limitations in developing regions, and regulatory fragmentation—that must be addressed for scalable adoption.
Suggested Citation
Dina Mohamed & Adham Fayad & Abdel-Mohsen O. Mohamed & Moza T. Al Nahyan, 2025.
"The Role of E-Waste in Sustainable Mineral Resource Management,"
Waste, MDPI, vol. 3(3), pages 1-42, August.
Handle:
RePEc:gam:jwaste:v:3:y:2025:i:3:p:27-:d:1727615
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jwaste:v:3:y:2025:i:3:p:27-:d:1727615. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.