IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v9y2017i9p1544-d110346.html
   My bibliography  Save this article

Overheating and Daylighting; Assessment Tool in Early Design of London’s High-Rise Residential Buildings

Author

Listed:
  • Bachir Nebia

    (Roberts and Treguer Ltd., London E1 7SA, UK)

  • Kheira Tabet Aoul

    (Architectural Engineering Department, United Arab Emirates University, P.O. Box 15551 Al Ain, UAE)

Abstract

High-rise residential buildings in dense cities, such as London, are a common response to housing shortage. The apartments in these buildings may experience different levels of thermal and visual comfort, depending on their orientation and floor level. This paper aims to develop simplified tools to predict internal temperatures and daylighting levels, and propose a tool to quickly assess overheating risk and daylight performance in London’s high-rise residential buildings. Single- and double-sided apartments in a high-rise building were compared, and the impact of their floor level, glazing ratio, thermal mass, ventilation strategy and orientation was investigated. Using Integrated Environmental Solutions Virtual Environment (IES VE), temperature and daylight factor results of each design variable were used to develop early design tools to predict and assess overheating risks and daylighting levels. The results indicate that apartments that are more exposed to solar radiations, through either orientation or floor level, are more susceptible to overheat in the summer while exceeding the daylighting recommendations. Different design strategies at different levels and orientations are subsequently discussed.

Suggested Citation

  • Bachir Nebia & Kheira Tabet Aoul, 2017. "Overheating and Daylighting; Assessment Tool in Early Design of London’s High-Rise Residential Buildings," Sustainability, MDPI, vol. 9(9), pages 1-23, August.
  • Handle: RePEc:gam:jsusta:v:9:y:2017:i:9:p:1544-:d:110346
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/9/9/1544/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/9/9/1544/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Joanna Ferdyn-Grygierek & Krzysztof Grygierek & Anna Gumińska & Piotr Krawiec & Adrianna Oćwieja & Robert Poloczek & Julia Szkarłat & Aleksandra Zawartka & Daria Zobczyńska & Daria Żukowska-Tejsen, 2021. "Passive Cooling Solutions to Improve Thermal Comfort in Polish Dwellings," Energies, MDPI, vol. 14(12), pages 1-15, June.
    2. Dušan Katunský & Erika Dolníková & Bystrík Dolník, 2018. "Daytime Lighting Assessment in Textile Factories Using Connected Windows in Slovakia: A Case Study," Sustainability, MDPI, vol. 10(3), pages 1-20, February.
    3. Haibo Guo & Lu Huang & Wenjie Song & Xinyue Wang & Hongnan Wang & Xinning Zhao, 2020. "Evaluation of the Summer Overheating Phenomenon in Reinforced Concrete and Cross Laminated Timber Residential Buildings in the Cold and Severe Cold Regions of China," Energies, MDPI, vol. 13(23), pages 1-25, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:9:y:2017:i:9:p:1544-:d:110346. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.