Author
Listed:
- Sylwia Gajewska
(Faculty of Chemical Technology and Engineering, Department of Catalytic and Sorbent Materials Engineering, West Pomeranian University of Technology in Szczecin, Piastów Ave. 42, 71-065 Szczecin, Poland)
- Joanna Siemak
(Faculty of Chemical Technology and Engineering, Department of Catalytic and Sorbent Materials Engineering, West Pomeranian University of Technology in Szczecin, Piastów Ave. 42, 71-065 Szczecin, Poland)
- Agnieszka Wróblewska
(Faculty of Chemical Technology and Engineering, Department of Catalytic and Sorbent Materials Engineering, West Pomeranian University of Technology in Szczecin, Piastów Ave. 42, 71-065 Szczecin, Poland)
- Beata Michalkiewicz
(Faculty of Chemical Technology and Engineering, Department of Catalytic and Sorbent Materials Engineering, West Pomeranian University of Technology in Szczecin, Piastów Ave. 42, 71-065 Szczecin, Poland)
Abstract
Avocado is a rich source of numerous nutrients, such as micro- and macroelements, essential unsaturated fatty acids, and vitamins essential for the correct functioning of the body. Consequently, its consumption has significantly increased in recent years. The primary edible part of the fruit is the flesh, while the seed is still considered biowaste. Currently, various methods for utilization of this biowaste are being explored, prompting the authors of this work to investigate the catalytic properties of ground avocado seeds. Dried, ground avocado seeds were used as the catalyst in the environmentally friendly oxidation of limonene with oxygen. The process was carried out in mild conditions, without the use of any solvent and at atmospheric pressure. The studies examined the influence of temperature (70–110 °C), the amount of the catalyst (0.5–5.0 wt%), and the reaction time (15–360 min). The analyses of the post-reaction mixtures were performed using the gas chromatography method (GC). The maximum value of the conversion of limonene obtained during the tests was 36 mol%. The main products of this process were as follows: 1,2-epoxylimonene, carveol, and perillyl alcohol. Also, the following compounds were determined in the post-reaction mixtures: carvone and 1,2-epoxylimonene diol. The studied process is interesting, taking into account both the management of waste in the form of avocado seeds and possible wide applications of limonene transformation products in medicine, cosmetics and the food industry. Given that limonene is now increasingly being extracted from waste orange peels, this is also a good way to manage the future naturally derived limonene and reduce the amount of waste orange peels. The presented studies fit perfectly with the goals of sustainable development and circular economy and may be the basis for the future development of “green technology” for obtaining value-added oxygenated derivatives of limonene. These studies show the use of waste biomass in the form of avocado seeds to obtain a green catalyst. In this context, our research presents an effective way of waste valorization.
Suggested Citation
Sylwia Gajewska & Joanna Siemak & Agnieszka Wróblewska & Beata Michalkiewicz, 2025.
"Avocado Seed Waste as a Green Catalyst for the Sustainable Oxidation of Limonene with Molecular Oxygen,"
Sustainability, MDPI, vol. 17(9), pages 1-21, April.
Handle:
RePEc:gam:jsusta:v:17:y:2025:i:9:p:3923-:d:1643652
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:9:p:3923-:d:1643652. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.