Author
Listed:
- Abdullah Basaloom
(Department of Earth Sciences and Engineering, Missouri University of Science and Technology, Rolla, MO 65401, USA)
- Hassan Alzahrani
(Department of Geology and Geophysics, College of Science, King Saud University, Riyadh 11451, Saudi Arabia)
Abstract
The UNESCO World Heritage Centre announced in 2011 that the Wadi Rum Protected Area (WRPA) is a global landmark for natural and cultural attraction, which represents an emerging industrial suburban and a critical socio-economic significance to the country of Jordan. The study area in Wadi Rum is located northeast of the Gulf of Aqaba between the African and Arabian plates. The region is historically characterized by significant tectonic activity and seismic events. This study focuses on characterizing the subsurface structural features of Wadi Rum through the application of the geophysical method of controlled-source audio-frequency magnetotellurics (CSAMT). CSAMT data were collected from 16 sounding stations, processed, and qualitatively interpreted. The qualitative interpretation involved two main approaches: constructing sounding curves for each station and generating apparent resistivity maps at fixed depths (frequencies). The results revealed the presence of at least four distinct subsurface layers. The surface layer exhibited relatively low resistivity values (<200 Ω·m), corresponding to alluvial and wadi sediments, as well as mud flats. Two intermediate layers were identified: the first showed very low resistivity values (80–100 Ω·m), likely due to medium-grained bedded sandstone, while the second displayed intermediate resistivity values (100–800 Ω·m), representing coarse basal conglomerates and coarse sandstone formations. The deepest layer demonstrated very high resistivity values (>1000 Ω·m), which were likely attributed to basement rocks. Analysis of resistivity maps, combined with prior geological information, indicates that the subsurface in the study area features a graben-like structure, characterized by two detected faults trending in the northeast (NE) and southwest (SW) directions. The findings of this study, by providing critical insights into the subsurface structure, make a considerable contribution to the urban sustainability of the region, which is necessary for the careful assessment of potential hazards and the strategic planning of future infrastructure development within the protected area.
Suggested Citation
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:5:p:2107-:d:1602406. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.