Author
Listed:
- Ruifeng Gao
(College of Information Engineering, Inner Mongolia University of Technology, Hohhot 010080, China)
- Zhanqiang Zhang
(College of Information Engineering, Inner Mongolia University of Technology, Hohhot 010080, China)
- Keqilao Meng
(College of New Energy, Inner Mongolia University of Technology, Ordos 010051, China)
- Yingqi Gao
(College of Information Engineering, Inner Mongolia University of Technology, Hohhot 010080, China)
- Wenyu Liu
(College of Information Engineering, Inner Mongolia University of Technology, Hohhot 010080, China)
Abstract
With the large-scale integration of wind power into the grid, the accuracy of wind farm cluster power prediction has become a key factor for the sustainability of modern power systems. Reliable ultra-short-term forecasts support the secure dispatch of high-penetration renewable energy, reduce wind curtailment, and improve the low-carbon and economical operation of power systems. Aiming at the problem of significant differences in wind turbine characteristics, this paper proposes a prediction method based on an improved density-based spatial clustering of applications with noise (DBSCAN) and a hybrid deep learning model. First, the wind speed signal is decomposed at multiple scales using successive variational modal decomposition (SVMD) to reduce non-stationarity. Subsequently, the DBSCAN parameters are optimized by the fruit fly optimization algorithm (FOA), and dimensionality reduction is performed by principal component analysis (PCA) to achieve efficient clustering of wind turbines. Next, the representative turbines with the highest correlation are selected in each cluster to reduce computational complexity. Finally, the SVMD-TCN-BiGRU-MSA-GJO hybrid model is constructed, and long-term dependence is extracted using a temporal convolutional network (TCN); the temporal features are captured by bidirectional gated recurrent units (BiGRUs); the feature weights are optimized by a multi-head self-attention mechanism (MSA), and the hyper-parameters are, in turn, optimized by golden jackal optimization (GJO). The experimental results show that this method reduces the MAE, RMSE, and MAPE by 14.02%, 12.9%, and 13.84%, respectively, and improves R 2 by 3.9% on average compared with the traditional model, which significantly improves prediction accuracy and stability. These improvements enable more accurate scheduling of wind power, lower reserve requirements, and enhanced stability and sustainability of power system operation under high renewable penetration.
Suggested Citation
Ruifeng Gao & Zhanqiang Zhang & Keqilao Meng & Yingqi Gao & Wenyu Liu, 2025.
"Sustainability-Oriented Ultra-Short-Term Wind Farm Cluster Power Prediction Based on an Improved TCN–BiGRU Hybrid Model,"
Sustainability, MDPI, vol. 17(23), pages 1-25, November.
Handle:
RePEc:gam:jsusta:v:17:y:2025:i:23:p:10719-:d:1807020
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:23:p:10719-:d:1807020. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.