Author
Listed:
- Qiran Cao
(Arcplus Institute of Shanghai Architectural Design & Research Co., Ltd., Shanghai 200063, China)
- Ying Zhou
(School of Architecture, Southeast University, Nanjing 210096, China
Ageing-Responsive Civilization Think Tank Academic Committee, Nanjing 210096, China)
Abstract
Generative AI is bringing revolutionary changes to architectural design. From data-driven and sustainable perspectives, this study introduces scientific data analysis methods to explore the specific application scenarios and effectiveness of generative AI in the early, middle, and late stages of architectural project design, while also examining its potential value in the field of sustainability. The research first synthesizes industry viewpoints through online data analysis. Secondly, it selects three typical practical architectural projects of different scales and types in which the author participated in comparative testing, recording the time, operational processes, and outputs required for schemes generated by the “traditional creative workflow” vs. the “AI-assisted workflow” at various stages. A multi-dimensional evaluation is conducted combining subjective questionnaires and objective performance simulation data. This study finds that generative AI can significantly enhance design efficiency and scheme diversity and guide the construction of sustainability dimensions, but challenges exist in quality control and technology integration. This research will provide an empirical framework and data benchmarks for architectural practitioners, clarifying a new design path of “data-driven–human–machine collaboration–sustainable optimization”, which holds significant reference value for promoting the transformation of the construction industry towards high efficiency and low carbon.
Suggested Citation
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:23:p:10643-:d:1804760. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.