Author
Listed:
- Adriana Grigorescu
(Department of Public Management, Faculty of Public Administration, National University of Political Studies and Public Administration, Expozitiei Boulevard, 30A, 012104 Bucharest, Romania
Academy of Romanian Scientists, Ilfov Street 3, 050094 Bucharest, Romania
National Institute for Economic Research “Costin C. Kiritescu”, Romanian Academy, Casa Academiei Române, Calea 13 Septembrie nr. 13, 050711 Bucharest, Romania
National Scientific Research Institute for Labor and Social Protection, Povernei Street 6, 010643 Bucharest, Romania)
- Cristina Lincaru
(National Scientific Research Institute for Labor and Social Protection, Povernei Street 6, 010643 Bucharest, Romania)
- Camelia Speranta Pirciog
(National Scientific Research Institute for Labor and Social Protection, Povernei Street 6, 010643 Bucharest, Romania)
Abstract
The transition to renewable energy is crucial in order to attain sustainable development, lower greenhouse gas emissions, and secure long-term energy security. This study examines spatial–temporal trends in electricity generation (both renewable and non-renewable) across EU-28 countries using monthly Eurostat data (2008–2025) at the NUTS0 level. Two harmonized Space–Time Cubes (STCs) were constructed for renewable and non-renewable electricity covering the fully comparable 2017–2024 interval, while 2008–2016 data were used for descriptive validation, and 2025 data were used for one-step-ahead forecasting. In this paper, the authors present a novel multi-method approach to energy transition dynamics in Europe, integrating forecasting (ESF), hot-spot detection (EHSA), and clustering (TSC) with the help of a new spatial–temporal modeling framework. The methodology is a step forward in the development of methodological literature, since it regards predictive and exploratory GIS analytics as comparative energy transition evaluation. The paper uses Exponential Smoothing Forecast (ESF) and Emerging Hot Spot Analysis (EHSA) in a GIS-based analysis to uncover the dynamics in the region and the possible production pattern. The ESF also reported strong predictive performance in the form of the mean Root Mean Square Errors (RMSE) of renewable and non-renewable electricity generation of 422.5 GWh and 438.8 GWh, respectively. Of the EU-28 countries, seasonality was statistically significant in 78.6 per cent of locations that relied on hydropower, and 35.7 per cent of locations exhibited structural outliers associated with energy-transition asymmetries. EHSA identified short-lived localized spikes in renewable electricity production in a few Western and Northern European countries: Portugal, Spain, France, Denmark, and Sweden, termed as sporadic renewable hot spots. There were no cases of persistent or increase-based hot spots in any country; therefore, renewable growth is temporally and spatially inhomogeneous in the EU-28. In the case of non-renewable sources, a hot spot was evident in France, with an intermittent hot spot in Spain and sporadic increases over time, but otherwise, there was no statistically significant activity of hot or cold spots in the rest of Europe, indicating structural stagnation in the generation of fossil-based electricity. Time Series Clustering (TSC) determined 10 temporal clusters in the generation of renewable and non-renewable electricity. All renewable clusters were statistically significantly increasing ( p < 0.001), with the most substantial increase in Cluster 4 (statistic = 9.95), observed in Poland, Finland, Portugal, and the Netherlands, indicating a transregional phase acceleration of renewable electricity production in northern, western, and eastern Europe. Conversely, all non-renewable clusters showed declining trends ( p < 0.001), with Cluster 5 (statistic = −8.58) showing a concerted reduction in the use of fossil-based electricity, in line with EU decarbonization policies. The results contribute to an improved understanding of the spatial dynamics of the European energy transition and its potential to support energy security, reduce fossil fuel dependency, and foster balanced regional development. These insights are crucial to harmonize policy measures with the objectives of the European Green Deal and the United Nations Sustainable Development Goals (especially Goals 7, 11, and 13).
Suggested Citation
Adriana Grigorescu & Cristina Lincaru & Camelia Speranta Pirciog, 2025.
"Driving Sustainable Development from Fossil to Renewable: A Space–Time Analysis of Electricity Generation Across the EU-28,"
Sustainability, MDPI, vol. 17(23), pages 1-66, November.
Handle:
RePEc:gam:jsusta:v:17:y:2025:i:23:p:10620-:d:1803869
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:23:p:10620-:d:1803869. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.