IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i23p10526-d1801996.html
   My bibliography  Save this article

Comparative Analysis of Parametric and Neural Network Models for Rural Highway Traffic Volume Prediction

Author

Listed:
  • Mohammed Al-Turki

    (Department of Civil Engineering, Jubail Industrial College (JIC), Royal Commission of Jubail and Yanbu (RCJY), P.O. Box 10099, Jubail Industrial City 31961, Saudi Arabia)

Abstract

The information and communication technology revolution has provided researchers with new opportunities to enhance traffic prediction methods. Accurate long-term traffic forecasts are essential for sustainable infrastructure planning, supporting proactive maintenance and efficient resource allocation. They also enable environmental impact assessments and help reduce carbon footprints through optimized traffic flow, minimized idling, and better planning for low-emission infrastructure. Most traffic prediction studies focus on short-term urban traffic, but there remains a gap in methods for long-term planning of rural highways, which pose significant challenges for intelligent transportation systems. This paper assesses and compares six prediction models for long-term daily traffic volume prediction, including two traditional time series methods (ARIMA and SARIMA) and four artificial neural networks (ANNs): three feedforward networks trained with Bayesian Regularization (BR), Scaled Conjugate Gradient (SCG), and Levenberg–Marquardt (LM), along with a nonlinear autoregressive (NAR) network. Applying mean absolute percentage error (MAPE) as the performance metric, the results showed that all models effectively captured the data’s nonlinearity, though their accuracy varied significantly. The NAR model proved to be the most accurate, with a minimum average MAPE of 2%. The Bayesian Regularization (BR) algorithm achieved superior performance (average MAPE: 4.50%) among the feedforward ANNs. Notably, the ARIMA, SARIMA, and ANN-LM models exhibited similar performance. Accordingly, the NAR model is recommended as the optimal choice for long-term traffic prediction. Implementing these models with optimal design will enhance long-term traffic volume forecasting, supporting sustainable transportation and improving intelligent highway operation systems.

Suggested Citation

  • Mohammed Al-Turki, 2025. "Comparative Analysis of Parametric and Neural Network Models for Rural Highway Traffic Volume Prediction," Sustainability, MDPI, vol. 17(23), pages 1-24, November.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:23:p:10526-:d:1801996
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/23/10526/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/23/10526/
    Download Restriction: no
    ---><---

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:23:p:10526-:d:1801996. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.