Author
Listed:
- Peng Yue
(Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China)
- Rongwei Chen
(Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China)
Abstract
Microplastics (MPs) are increasingly reported as contaminants in sewage sludge, with wastewater treatment plants retaining approximately 10 3 –10 6 particles kg −1 of dry sludge. Anaerobic digestion (AD), widely applied for sludge stabilization and energy recovery, does not consistently remove these particles; MPs frequently persist and, at elevated or sensitive loadings, have been shown to affect methane production, microbial communities and sludge quality. In parallel, thermal hydrolysis and related pretreatments are being implemented at full scale to enhance sludge biodegradability, exposing embedded MPs to high temperature and pressure prior to AD. This review compiles and analyzes experimental studies on MPs in sludge pretreatment and AD systems, with an emphasis on how pretreatment severity, MP type, particle size and concentration influence MP transformation and process performance. Reported data indicate that intensified pretreatment accelerates MP aging, causing fragmentation, oxidative surface modification and additive release, while subsequent AD generally induces limited further MP degradation but can be negatively affected through reduced methane yields, shifts in microbial consortia and altered behavior of co-contaminants. Mechanisms implicated include leaching of plastic additives, enhanced oxidative and physiological stress, and formation of plastisphere biofilms that perturb syntrophic interactions. Mitigation approaches, including optimized thermal hydrolysis–AD configurations and the use of carbonaceous sorbents, are assessed with regard to their effects on MP-associated inhibition and their practical constraints. Analytical limitations, uncertainties in MP mass balances and environmental fate, and key research needs for evaluating MP risks and designing MP-resilient sludge treatment and biosolid management strategies are identified.
Suggested Citation
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:23:p:10471-:d:1800593. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.