IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i22p10145-d1793638.html
   My bibliography  Save this article

Tripartite Evolutionary Game for Carbon Reduction in Highway Service Areas: Evidence from Xinjiang, China

Author

Listed:
  • Huiru Bai

    (College of Civil Engineering and Architecture, Xinjiang University, Urumqi 830000, China)

  • Dianwei Qi

    (College of Civil Engineering and Architecture, Xinjiang University, Urumqi 830000, China)

Abstract

This study focuses on highway service areas. Building upon prior research that identified key influencing factors through surveys and ISM–MICMAC analysis, it constructs a tripartite evolutionary game model involving the government, service area operators, and carbon reduction technology providers based on stakeholder theory. Combined with MATLAB simulations, the model reveals the dynamic patterns of the carbon reduction system. The results indicate that government strategies exert the strongest influence on the system and catalyze the other two parties, followed by service area operators. Carbon reduction technology providers adopt a more cautious stance in decision-making. Government actions shape system evolution through a “cost-benefit-incentive” triple mechanism, with its strategies exhibiting significant spillover effects on other actors. Enterprise behavior is markedly influenced by Xinjiang’s regional characteristics, where the core barriers to corporate carbon reduction lie in the costs of proactive equipment and technological investments. The willingness of technology providers to cooperate primarily depends on two drivers: incremental baseline benefits and enhanced economies of scale. The core trade-off in government decision-making lies between the cost of strong regulation (Cg1) and the cost of environmental governance under weak regulation (Cg2). An increase in Cg1 prolongs the government’s convergence time by 233.3% and indirectly suppresses the willingness of enterprises and technology providers due to weakened subsidy capacity. Enterprises are relatively sensitive to the investment costs of carbon reduction equipment and technology, with convergence time extending by 120%. Technology providers are highly sensitive to incremental baseline returns (Rt), with stabilization time extending by 500%. Compared to existing research, this model quantitatively reveals the “cost-benefit-incentive” triple transmission mechanism for carbon reduction coordination in “grid-end” regions, identifying key parameters for strategic shifts among stakeholders. Based on this, corresponding policy recommendations are provided for all three parties, offering precise and actionable directions for the sustainable advancement of carbon reduction efforts in service areas. The research conclusions can provide a replicable collaborative framework for decarbonizing transportation infra-structure in grid-end regions with high clean energy endowments.

Suggested Citation

  • Huiru Bai & Dianwei Qi, 2025. "Tripartite Evolutionary Game for Carbon Reduction in Highway Service Areas: Evidence from Xinjiang, China," Sustainability, MDPI, vol. 17(22), pages 1-40, November.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:22:p:10145-:d:1793638
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/22/10145/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/22/10145/
    Download Restriction: no
    ---><---

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:22:p:10145-:d:1793638. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.