Author
Listed:
- Xingli Li
(College of Geoscience and Surveying Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
CCTEG Ecological Environment Technology Co., Ltd., Tianjin 300450, China)
- Huayang Dai
(College of Geoscience and Surveying Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China)
- Fengming Li
(CCTEG Ecological Environment Technology Co., Ltd., Tianjin 300450, China)
- Haolei Zhang
(CCTEG Ecological Environment Technology Co., Ltd., Tianjin 300450, China)
- Jun Fang
(CCTEG Ecological Environment Technology Co., Ltd., Tianjin 300450, China)
Abstract
Subsidence over abandoned goaves is a primary trigger for secondary geological hazards such as surface collapse, landslides, and cracking. This threatens safe mining operations, impairs regional economic progress, and endangers local inhabitants and their assets. At present, goaf areas are mainly treated through grouting. However, owing to the deficiencies of traditional deformation monitoring methods (e.g., leveling and GPS), including their slow speed, high cost, and limited data accuracy influenced by the number of monitoring points, the surface deformation features of goaf zones treated with grouting cannot be obtained in a timely fashion. Therefore, this study proposes a method to analyze the spatio-temporal patterns of surface deformation in grout-filled goaves based on the fusion of Multi-temporal InSAR technologies, leveraging the complementary advantages of D-InSAR, PS-InSAR, and SBAS-InSAR techniques. An investigation was conducted in a coal mine located in Shandong Province, China, utilizing an integrated suite of C-band satellite data. This dataset included 39 scenes from the RadarSAT-2 and 40 scenes from the Sentinel missions, acquired between September 2019 and September 2022. Key results reveal a significant reduction in surface deformation rates following grouting operations: pre-grouting deformation reached up to −98 mm/a (subsidence) and +134 mm/a (uplift), which decreased to −11.2 mm/a and +18.7 mm/a during grouting, and further stabilized to −10.0 mm/a and +16.0 mm/a post-grouting. Time-series analysis of cumulative deformation and typical coherent points confirmed that grouting effectively mitigated residual subsidence and induced localized uplift due to soil compaction and fracture expansion. The comparison with the leveling measurement data shows that the accuracy of this method meets the requirements, confirming the method’s efficacy in capturing the actual ground dynamics during grouting. It provides a scientific basis for the safe expansion of mining cities and the safe reuse of land resources.
Suggested Citation
Xingli Li & Huayang Dai & Fengming Li & Haolei Zhang & Jun Fang, 2025.
"Settlement and Deformation Characteristics of Grouting-Filled Goaf Areas Using Integrated InSAR Technologies,"
Sustainability, MDPI, vol. 17(22), pages 1-18, November.
Handle:
RePEc:gam:jsusta:v:17:y:2025:i:22:p:10015-:d:1790915
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:22:p:10015-:d:1790915. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.