Author
Listed:
- Ziqiang He
(School of Architecture and Urban Planning, Hunan City University, Yiyang 413000, China)
- Yu Chen
(School of Architecture and Urban Planning, Hunan City University, Yiyang 413000, China
Key Laboratory of Key Technologies of Digital Urban-Rural Spatial Planning of Hunan Province, Yiyang 413000, China)
- Qimeng Ning
(School of Architecture and Urban Planning, Hunan City University, Yiyang 413000, China
Key Laboratory of Urban Planning Information Technology of Hunan Provincial Universities, Yiyang 413000, China)
- Bo Lu
(School of Architecture and Urban Planning, Hunan City University, Yiyang 413000, China)
- Shixiong Xie
(School of Civil and Environmental Engineering, Hunan University of Technology, Zhuzhou 412007, China)
- Shijie Tang
(Shanghai Academy of Fine Arts, Shanghai University, Shanghai 200444, China)
Abstract
The factors influencing urban pluvial flooding in cities with complex topography, such as hill–basin systems, are highly nonlinear and spatially heterogeneous due to the interplay between rugged terrain and intensive human activities. However, previous research has predominantly focused on plain, mountainous, and coastal cities. As a result, the waterlogging mechanisms in hill–basin areas remain notably understudied. In this study, we developed a geographically explainable artificial intelligence (GeoXAI) framework integrating Geographical Machine Learning Regression (GeoMLR) and Geographical Shapley (GeoShapley) values to analyze nonlinear impacts of flooding factors in Changsha, a typical hill–basin city. The XGBoost model was employed to predict flooding risk (validation AUC = 0.8597, R 2 = 0.8973), while the GeoMLR model verified stable nonlinear driving relationships between factors and flooding susceptibility (test set R 2 = 0.7546)—both supporting the proposal of targeted zonal regulation strategies. Results indicated that impervious surface density (ISD), normalized difference vegetation index (NDVI), and slope are the dominant drivers of flooding, with each exhibiting distinct nonlinear threshold effects (ISD > 0.35, NDVI < 0.70, Slope < 5°) that differ significantly from those identified in plain, mountainous, or coastal regions. Spatial analysis further revealed that topography regulates flooding by controlling convergence pathways and flow velocity, while vegetation mitigates flooding through enhanced interception and infiltration, showing complementary effects across zones. Based on these findings, we proposed tailored zonal management strategies. This study not only advances the mechanistic understanding of urban waterlogging in hill–basin regions but also provides a transferable GeoXAI framework offering a robust methodological foundation for flood resilience planning in topographically complex cities.
Suggested Citation
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:21:p:9866-:d:1787976. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.