Author
Listed:
- Ruiyu Wang
(College of Geosciences and Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450046, China)
- Wenli Wan
(College of Geosciences and Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450046, China)
- Pinghui Liu
(College of Geosciences and Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450046, China)
Abstract
Soil heavy metal pollution is becoming increasingly severe, while traditional remediation methods are inefficient and lack long-term stability. This study innovatively combines electrokinetic remediation (EK), microbial-induced calcium carbonate precipitation (MICP), and biochar for synergistic stabilization of contaminated soil. It evaluates the combined technology by comparing it with individual EK and MICP treatments through chemical speciation analysis and the Toxicity Characteristic Leaching Procedure (TCLP). The concentration of 1 mol/L urea–CaCl 2 was identified as optimal for microbial activity, achieving a microbial cell density (OD 600 ) of 1.0, a urease activity of 12 U/g, and a soil pH maintained within the range of 7.8–8.2. Corn stover biochar significantly enhanced urease activity—being 49.4% higher than that in the coconut shell biochar group and 25% higher than that in the bamboo biochar group—and increased the microbial survival rate by 25.4%. Group D1, which adopted the sequence of “EK treatment first, followed by biochar-synergized MICP treatment,” exhibited the best performance. It achieved stabilization efficiency of 51.90%, 73.40%, and 36.26% for bioavailable Cu, Cd, and Pb, respectively—all higher than those of individual EK and MICP treatments. Additionally, the residual fractions of heavy metals increased significantly, the leaching concentration of Cd in the anode region was below 1 mg/L, and energy consumption was 12.16% lower than that of the EK group. Microstructural analysis confirmed that the combined method promoted the formation of stable calcite, thereby improving soil aggregation and alleviating soil compaction. These findings collectively validate the proposed technology as a highly effective and sustainable strategy for stabilizing heavy metal-contaminated soil.
Suggested Citation
Ruiyu Wang & Wenli Wan & Pinghui Liu, 2025.
"Experimental Study on Stabilization of Heavy Metal-Contaminated Soil by Biochar–MICP–Electrokinetics Combined Technology,"
Sustainability, MDPI, vol. 17(21), pages 1-25, November.
Handle:
RePEc:gam:jsusta:v:17:y:2025:i:21:p:9811-:d:1787161
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:21:p:9811-:d:1787161. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.