IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i21p9801-d1786769.html
   My bibliography  Save this article

PropNet-R: A Custom CNN Architecture for Quantitative Estimation of Propane Gas Concentration Based on Thermal Images for Sustainable Safety Monitoring

Author

Listed:
  • Luis Alberto Holgado-Apaza

    (Departamento Académico de Ingeniería de Sistemas e Informática, Facultad de Ingeniería, Universidad Nacional Amazónica de Madre de Dios, Puerto Maldonado 17001, Peru)

  • Jaime Cesar Prieto-Luna

    (Departamento Académico de Ingeniería de Sistemas e Informática, Facultad de Ingeniería, Universidad Nacional Amazónica de Madre de Dios, Puerto Maldonado 17001, Peru)

  • Edgar E. Carpio-Vargas

    (Departamento Académico de Ingeniería Estadística e Informática, Universidad Nacional del Altiplano-Puno, Puno 21001, Peru)

  • Nelly Jacqueline Ulloa-Gallardo

    (Departamento Académico de Ingeniería de Sistemas e Informática, Facultad de Ingeniería, Universidad Nacional Amazónica de Madre de Dios, Puerto Maldonado 17001, Peru)

  • Yban Vilchez-Navarro

    (Departamento Académico de Ingeniería de Sistemas e Informática, Facultad de Ingeniería, Universidad Nacional Amazónica de Madre de Dios, Puerto Maldonado 17001, Peru)

  • José Miguel Barrón-Adame

    (Departamento de Mantenimiento Industrial, Universidad Tecnológica del Suroeste de Guanajuato, Valle de Santiago 38407, Mexico)

  • José Alfredo Aguirre-Puente

    (Departamento de Mantenimiento Industrial, Universidad Tecnológica del Suroeste de Guanajuato, Valle de Santiago 38407, Mexico)

  • Dalmiro Ramos Enciso

    (Departamento Académico de Ingeniería de Sistemas e Informática, Facultad de Ingeniería, Universidad Nacional Amazónica de Madre de Dios, Puerto Maldonado 17001, Peru)

  • Danger David Castellon-Apaza

    (Departamento Académico de Ingeniería de Sistemas e Informática, Facultad de Ingeniería, Universidad Nacional Amazónica de Madre de Dios, Puerto Maldonado 17001, Peru)

  • Danny Jesus Saman-Pacamia

    (Departamento Académico de Ingeniería de Sistemas e Informática, Facultad de Ingeniería, Universidad Nacional Amazónica de Madre de Dios, Puerto Maldonado 17001, Peru)

Abstract

Liquefied petroleum gas (LPG), composed mainly of propane and butane, is widely used as an energy source in residential, commercial, and industrial sectors; however, its high flammability poses a critical risk in the event of accidental leaks. In Peru, where LPG constitutes the main domestic energy source, leakage emergencies affect thousands of households each year. This pattern is replicated in developing countries with limited energy infrastructure. Early quantitative detection of propane, the predominant component of Peruvian LPG (~60%), is essential to prevent explosions, poisoning, and greenhouse gas emissions that hinder climate change mitigation strategies. This study presents PropNet-R, a convolutional neural network (CNN) designed to estimate propane concentrations (ppm) from thermal images. A dataset of 3574 thermal images synchronized with concentration measurements was collected under controlled conditions. PropNet-R, composed of four progressive convolutional blocks, was compared with SqueezeNet, VGG19, and ResNet50, all fine-tuned for regression tasks. On the test set, PropNet-R achieved MSE = 0.240, R 2 = 0.614, MAE = 0.333, and Pearson’s r = 0.786, outperforming SqueezeNet (MSE = 0.374, R 2 = 0.397), VGG19 (MSE = 0.447, R 2 = 0.280), and ResNet50 (MSE = 0.474, R 2 = 0.236). These findings provide empirical evidence that task-specific CNN architectures outperform generic transfer learning models in thermal image-based regression. By enabling continuous and quantitative monitoring of gas leaks, PropNet-R enhances safety in industrial and urban environments, complementing conventional chemical sensors. The proposed model contributes to the development of sustainable infrastructure by reducing gas-related risks, promoting energy security, and strengthening resilient, safe, and environmentally responsible urban systems.

Suggested Citation

  • Luis Alberto Holgado-Apaza & Jaime Cesar Prieto-Luna & Edgar E. Carpio-Vargas & Nelly Jacqueline Ulloa-Gallardo & Yban Vilchez-Navarro & José Miguel Barrón-Adame & José Alfredo Aguirre-Puente & Dalmir, 2025. "PropNet-R: A Custom CNN Architecture for Quantitative Estimation of Propane Gas Concentration Based on Thermal Images for Sustainable Safety Monitoring," Sustainability, MDPI, vol. 17(21), pages 1-24, November.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:21:p:9801-:d:1786769
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/21/9801/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/21/9801/
    Download Restriction: no
    ---><---

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:21:p:9801-:d:1786769. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.