Author
Listed:
- Angel J. Medina-Medina
(Instituto de Investigación para el Desarrollo Sustentable de Ceja de Selva (INDES-CES), Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01001, Peru)
- Samuel Pizarro
(Instituto de Investigación para el Desarrollo Sustentable de Ceja de Selva (INDES-CES), Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01001, Peru)
- Katerin M. Tuesta-Trauco
(Instituto de Investigación para el Desarrollo Sustentable de Ceja de Selva (INDES-CES), Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01001, Peru)
- Jhon A. Zabaleta-Santisteban
(Instituto de Investigación para el Desarrollo Sustentable de Ceja de Selva (INDES-CES), Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01001, Peru)
- Abner S. Rivera-Fernandez
(Instituto de Investigación para el Desarrollo Sustentable de Ceja de Selva (INDES-CES), Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01001, Peru)
- Jhonsy O. Silva-López
(Área de Cartografía y Teledetección, Laboratorio de Agrostología, Instituto de Investigación en Ganadería y Biotecnología, Facultad de Ingeniería Zootecnista, Agronegocios y Biotecnología, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01001, Peru)
- Rolando Salas López
(Instituto de Investigación para el Desarrollo Sustentable de Ceja de Selva (INDES-CES), Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01001, Peru)
- Renzo E. Terrones Murga
(Lidar Peru Sociedad Cerrada, Av. Alfredo Benavides Nro. 1944, Lima 15047, Peru)
- José A. Sánchez-Vega
(Instituto de Investigación para el Desarrollo Sustentable de Ceja de Selva (INDES-CES), Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01001, Peru)
- Teodoro B. Silva-Melendez
(Instituto de Investigación para el Desarrollo Sustentable de Ceja de Selva (INDES-CES), Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01001, Peru)
- Manuel Oliva-Cruz
(Instituto de Investigación para el Desarrollo Sustentable de Ceja de Selva (INDES-CES), Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01001, Peru)
- Elgar Barboza
(Instituto de Investigación para el Desarrollo Sustentable de Ceja de Selva (INDES-CES), Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01001, Peru)
- Alexander Cotrina-Sanchez
(Instituto de Investigación para el Desarrollo Sustentable de Ceja de Selva (INDES-CES), Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01001, Peru)
Abstract
Accurate estimation of aboveground biomass (AGB) is essential for monitoring forage availability and guiding sustainable management in high-altitude pastures, where grazing sustains livelihoods but also drives ecological degradation. Although remote sensing has advanced biomass modeling in rangelands, applications in Andean–Amazonian ecosystems remain limited, particularly using UAV-based structural and spectral data. This study evaluated the potential of UAV LiDAR and multispectral imagery to estimate fresh and dry AGB in ryegrass ( Lolium multiflorum Lam.) pastures of Amazonas, Peru. Field data were collected from subplots within 13 plots across two sites (Atuen and Molinopampa) and modeled using Random Forest (RF), Support Vector Machines, and Elastic Net. AGB maps were generated at 0.2 m and 1 m resolutions. Results revealed clear site- and month-specific contrasts, with Atuen yielding higher AGB than Molinopampa, linked to differences in climate, topography, and grazing intensity. RF achieved the best accuracy, with chlorophyll-sensitive indices dominating fresh biomass estimation, while LiDAR-derived height metrics contributed more to dry biomass prediction. Predicted maps captured grazing-induced heterogeneity at fine scales, while aggregated products retained broader gradients. Overall, this study shows the feasibility of UAV-based multi-sensor integration for biomass monitoring and supports adaptive grazing strategies for sustainable management in Andean–Amazonian ecosystems.
Suggested Citation
Angel J. Medina-Medina & Samuel Pizarro & Katerin M. Tuesta-Trauco & Jhon A. Zabaleta-Santisteban & Abner S. Rivera-Fernandez & Jhonsy O. Silva-López & Rolando Salas López & Renzo E. Terrones Murga & , 2025.
"Integrating UAV LiDAR and Multispectral Data for Aboveground Biomass Estimation in High-Andean Pastures of Northeastern Peru,"
Sustainability, MDPI, vol. 17(21), pages 1-21, October.
Handle:
RePEc:gam:jsusta:v:17:y:2025:i:21:p:9745-:d:1784893
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:21:p:9745-:d:1784893. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.