Author
Listed:
- Ali Alhazmi
(Department of Computer Science, College of Engineering and Computer Science, Jazan University, Jazan 45142, Saudi Arabia)
- Kholoud Maswadi
(Department of Management Information Systems, College of Business, Jazan University, Jazan 45142, Saudi Arabia)
- Christopher Ifeanyi Eke
(Department of Computer Science, Faculty of Computing, Federal University of Lafia, P.M.B 146, Lafia 950101, Nigeria)
Abstract
The swift advancement of renewable energy technology has highlighted the need for effective photovoltaic (PV) solar energy tracking systems. Deep learning (DL) has surfaced as a promising method to improve the precision and efficacy of photovoltaic (PV) solar tracking by utilising complicated patterns in meteorological and PV system data. This systematic literature review (SLR) seeks to offer a thorough examination of the progress in deep learning architectures for photovoltaic solar energy tracking over the last decade (2016–2025). The review was structured around four research questions (RQs) aimed at identifying prevalent deep learning architectures, datasets, performance metrics, and issues within the context of deep learning-based PV solar tracking systems. The present research utilised SLR methodology to analyse 64 high-quality publications from reputed academic databases like IEEE Xplore, Science Direct, Springer, and MDPI. The results indicated that deep learning architectures, including Convolutional Neural Networks (CNNs), Long Short-Term Memory (LSTM) networks, and Transformer-based models, are extensively employed to improve the accuracy and efficiency of photovoltaic solar tracking systems. Widely utilised datasets comprised meteorological data, photovoltaic system data, time series data, temperature data, and image data. Performance metrics, including Mean Absolute Error (MAE), Mean Squared Error (MSE), and Mean Absolute Percentage Error (MAPE), were employed to assess model efficacy. Identified significant challenges encompass inadequate data quality, restricted availability, high computing complexity, and issues in model generalisation. Future research should concentrate on enhancing data quality and accessibility, creating generalised models, minimising computational complexity, and integrating deep learning with real-time photovoltaic systems. Resolving these challenges would facilitate advancements in efficient, reliable, and sustainable photovoltaic solar tracking systems, hence promoting the wider adoption of renewable energy technology. This review emphasises the capability of deep learning to transform photovoltaic solar tracking and stresses the necessity for interdisciplinary collaboration to address current limitations.
Suggested Citation
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:21:p:9625-:d:1782495. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.