IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i21p9596-d1781811.html
   My bibliography  Save this article

Climate Change and Assessing Thermal Comfort in Social Housing of Southeastern Mexico: A Prospective Study Using Machine Learning and Global Sensitivity Analysis

Author

Listed:
  • Diana Romero

    (Estudiante de Posgrado, Facultad de Ingeniería, Universidad Autónoma de Yucatán, Av. Industrias No Contaminantes, Mérida 97302, Yucatán, Mexico
    Laboratorio de Modelado y Optimización de Procesos Energéticos y Ambientales, Facultad de Ingeniería, Universidad Autónoma de Yucatán, Av. Industrias No Contaminantes, Mérida 97302, Yucatán, Mexico
    These authors contributed equally to this manuscript.)

  • Karla A. Torres

    (Estudiante de Posgrado, Facultad de Ingeniería, Universidad Autónoma de Yucatán, Av. Industrias No Contaminantes, Mérida 97302, Yucatán, Mexico
    Laboratorio de Modelado y Optimización de Procesos Energéticos y Ambientales, Facultad de Ingeniería, Universidad Autónoma de Yucatán, Av. Industrias No Contaminantes, Mérida 97302, Yucatán, Mexico
    These authors contributed equally to this manuscript.)

  • Joanny Gonzalez

    (Estudiante de Posgrado, Facultad de Ingeniería, Universidad Autónoma de Yucatán, Av. Industrias No Contaminantes, Mérida 97302, Yucatán, Mexico
    These authors contributed equally to this manuscript.)

  • A. J. Cetina-Quiñones

    (Laboratorio de Modelado y Optimización de Procesos Energéticos y Ambientales, Facultad de Ingeniería, Universidad Autónoma de Yucatán, Av. Industrias No Contaminantes, Mérida 97302, Yucatán, Mexico
    Tecnológico Nacional de México, Instituto Tecnológico de Mérida, Perif. de Mérida Lic. Manuel Berzunza, Zona Dorada, Mérida 97302, Yucatán, Mexico)

  • Cesar Acosta

    (Facultad de Ingeniería, Universidad Autónoma de Yucatán, Av. Industrias No Contaminantes, Mérida 97302, Yucatán, Mexico)

  • M. Sadoqi

    (Department of Physics, St. John’s University, 8000 Utopia Parkway, Queens, NY 11439, USA)

  • A. Bassam

    (Laboratorio de Modelado y Optimización de Procesos Energéticos y Ambientales, Facultad de Ingeniería, Universidad Autónoma de Yucatán, Av. Industrias No Contaminantes, Mérida 97302, Yucatán, Mexico)

Abstract

Social housing in tropical regions faces critical thermal comfort challenges that will intensify under future climate change, yet current design practices lack systematic frameworks for evaluating long-term performance across multiple climate scenarios. This study assesses the thermal performance of social housing in southeastern Mexico using energy simulation, supervised machine learning, and global sensitivity analysis. Two housing typologies (single-story and two-story) were modeled across four cities (Mérida, Campeche, Cancún, and Tuxtla Gutiérrez) under climate change scenarios (RCP 2.6, 4.5, and 8.5) for 2050 and 2100. Various machine learning models were trained to predict comfort temperature and cooling degree days. Regression Trees demonstrated superior performance, with R 2 values exceeding 0.98 for both thermal comfort indicators, achieving RMSE values of 0.0095 °C for comfort temperature and 0.2613 °C for cooling degree days. Global sensitivity analysis using the PAWN method revealed that ambient temperature was the most influential variable, accounting for 45–49% of the total sensitivity, followed by solar radiation (17–22%) and relative humidity (10–12%), while building-specific parameters had modest impacts (0.6–3.8%). Geographic variations were significant, with Mérida and Campeche showing higher cooling demands than Cancún and Tuxtla Gutiérrez. Future climate projections indicate substantial increases in cooling requirements by 2100, with CDD values expected to increase by approximately 40–50% under the RCP 8.5 scenario compared to current conditions. This research presents a computational framework for assessing thermal comfort in social housing, providing evidence-based insights for climate-adaptive building strategies in tropical regions.

Suggested Citation

  • Diana Romero & Karla A. Torres & Joanny Gonzalez & A. J. Cetina-Quiñones & Cesar Acosta & M. Sadoqi & A. Bassam, 2025. "Climate Change and Assessing Thermal Comfort in Social Housing of Southeastern Mexico: A Prospective Study Using Machine Learning and Global Sensitivity Analysis," Sustainability, MDPI, vol. 17(21), pages 1-28, October.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:21:p:9596-:d:1781811
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/21/9596/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/21/9596/
    Download Restriction: no
    ---><---

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:21:p:9596-:d:1781811. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.