Author
Listed:
- Linshen Yang
(College of Philosophy and Society, Jilin University, Changchun 130012, China)
- Xinyan Wang
(College of Physical Education, Jilin University, Changchun 130012, China)
- Yingjun Jiao
(College of Physical Education, Jilin University, Changchun 130012, China)
Abstract
The integration of Internet of Things (IoT) technologies into public healthcare enables continuous monitoring and sustainable health management. However, conventional frameworks often depend on transmitting and storing raw personal data on centralized servers, posing challenges related to privacy, security, ethical compliance, and long-term sustainability. This study proposes a privacy-preserving framework that avoids the exposure of true health-related data. Sensor nodes encrypt collected measurements and collaborate with a secure computation core to evaluate health indicators under homomorphic encryption, maintaining confidentiality. For example, the system can determine whether a patient’s heart rate within a monitoring window falls inside clinically recommended thresholds, while the framework remains general enough to support a wide range of encrypted computations. A compliance verification client generates zero-knowledge range proofs, allowing external parties to verify whether health indicators meet predefined conditions without accessing actual values. Simulation results confirm the correctness of encrypted computation, controllability of threshold-based compliance judgments, and resistance to inference attacks. The proposed framework provides a practical solution for secure, auditable, and sustainable real-time health assessment in IoT-enabled public healthcare systems.
Suggested Citation
Linshen Yang & Xinyan Wang & Yingjun Jiao, 2025.
"Sustainable and Trustworthy Digital Health: Privacy-Preserving, Verifiable IoT Monitoring Aligned with SDGs,"
Sustainability, MDPI, vol. 17(20), pages 1-19, October.
Handle:
RePEc:gam:jsusta:v:17:y:2025:i:20:p:9020-:d:1769102
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:20:p:9020-:d:1769102. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.