Author
Listed:
- Qing Yu
(Fisheries College, Jimei University, Xiamen 361021, China)
- Jinling Ye
(Fisheries College, Jimei University, Xiamen 361021, China)
- Xinlei Xu
(Fisheries College, Jimei University, Xiamen 361021, China)
- Zhiqiang Lu
(Fisheries College, Jimei University, Xiamen 361021, China)
- Li Ma
(Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China)
Abstract
This study employs an improved fractional-order grey multivariable convolution model (FGMC(1,N,2r)) to predict abalone aquaculture output in Fujian, Shandong, and Guangdong. By integrating fractional-order accumulation ( r 1 , r 2 ) with a particle-swarm-optimization (PSO) algorithm, the model addresses limitations of handling multivariable interactions and sequence heterogeneity within small-sample regional datasets. Grey relational analysis (GRA) first identified key factors exhibiting the strongest associations with production: abalone production in Fujian and Shandong is predominantly influenced by funding for aquatic-technology extension (GRA degrees of 0.9156 and 0.8357, respectively), while in Guangdong, production was most strongly associated with import volume (GRA degree of 0.9312). Validation confirms that FGMC(1,N,2r) achieves superior predictive accuracy, with mean absolute percentage errors (MAPE) of 0.51% in Fujian, 3.51% in Shandong, and 2.12% in Guangdong, significantly outperforming benchmark models. Prediction of abalone production for 2024–2028 project sustained growth across Fujian, Shandong, and Guangdong. However, risks associated with typhoon disasters ( X 6 and import dependency ( X 5 ) require attention. The study demonstrates that the FGMC(1,N,2r) model achieves high predictive accuracy for regional aquaculture output. It identifies the primary drivers of abalone production: technology-extension funding in Fujian and Shandong, and import volume in Guangdong. These findings support the formulation of region-specific strategies, such as enhancing technological investment in Fujian and Shandong, and strengthening seed supply chains while reducing import dependency in Guangdong. Furthermore, by identifying vulnerabilities such as typhoon disasters and import reliance, the study underscores the need for resilient infrastructure and diversified seed sources, thereby providing a robust scientific basis for production optimization and policy guidance towards sustainable and environmentally sound aquaculture development.
Suggested Citation
Qing Yu & Jinling Ye & Xinlei Xu & Zhiqiang Lu & Li Ma, 2025.
"Prediction and Analysis of Abalone Aquaculture Production in China Based on an Improved Grey System Model,"
Sustainability, MDPI, vol. 17(19), pages 1-20, October.
Handle:
RePEc:gam:jsusta:v:17:y:2025:i:19:p:8862-:d:1764621
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:19:p:8862-:d:1764621. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.