IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i19p8785-d1761891.html
   My bibliography  Save this article

Deployment Potential of Concentrating Solar Power Technologies in California

Author

Listed:
  • Chad Augustine

    (National Renewable Energy Laboratory, Golden, CO 80401, USA)

  • Sarah Awara

    (National Renewable Energy Laboratory, Golden, CO 80401, USA)

  • Hank Price

    (Solar Dynamics, LLC, Broomfield, CO 80020, USA)

  • Alexander Zolan

    (National Renewable Energy Laboratory, Golden, CO 80401, USA)

Abstract

As states within the United States respond to future grid development goals, there is a growing demand for reliable and resilient nighttime generation that can be addressed by low-cost, long-duration energy storage solutions. This report studies the potential of including concentrating solar power (CSP) in the technology mix to support California’s goals as defined in Senate Bill 100. A joint agency report study that determined potential pathways to achieve the renewable portfolio standard set by the bill did not include CSP, and our work provides information that could be used as a follow-up. This study uses a capacity expansion model configured to have nodal spatial fidelity in California and balancing-area fidelity in the Western Interconnection outside of California. The authors discovered that by applying current technology cost projections CSP fulfills nearly 15% of the annual load while representing just 6% of total installed capacity in 2045, replacing approximately 30 GWe of wind, solar PV, and standalone batteries compared to a scenario without CSP included. The deployment of CSP in the results is sensitive to the technology’s cost, which highlights the importance of meeting cost targets in 2030 and beyond to enable the technology’s potential contribution to California’s carbon reduction goals.

Suggested Citation

  • Chad Augustine & Sarah Awara & Hank Price & Alexander Zolan, 2025. "Deployment Potential of Concentrating Solar Power Technologies in California," Sustainability, MDPI, vol. 17(19), pages 1-20, September.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:19:p:8785-:d:1761891
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/19/8785/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/19/8785/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sylvain Rodat & Richard Thonig, 2024. "Status of Concentrated Solar Power Plants Installed Worldwide: Past and Present Data," Clean Technol., MDPI, vol. 6(1), pages 1-14, March.
    2. Gabriella Ferruzzi & Camelia Delcea & Antonino Barberi & Vincenzo Di Dio & Marialaura Di Somma & Pietro Catrini & Stefania Guarino & Federico Rossi & Maria Laura Parisi & Adalgisa Sinicropi & Sonia Lo, 2023. "Concentrating Solar Power: The State of the Art, Research Gaps and Future Perspectives," Energies, MDPI, vol. 16(24), pages 1-39, December.
    3. Viebahn, Peter & Lechon, Yolanda & Trieb, Franz, 2011. "The potential role of concentrated solar power (CSP) in Africa and Europe--A dynamic assessment of technology development, cost development and life cycle inventories until 2050," Energy Policy, Elsevier, vol. 39(8), pages 4420-4430, August.
    4. Abiodun, Kehinde & Hood, Karoline & Cox, John L. & Newman, Alexandra M. & Zolan, Alex J., 2023. "The value of concentrating solar power in ancillary services markets," Applied Energy, Elsevier, vol. 334(C).
    5. Giovanni Brumana & Elisa Ghirardi & Giuseppe Franchini, 2024. "Comparison of Different Power Generation Mixes for High Penetration of Renewables," Sustainability, MDPI, vol. 16(19), pages 1-16, September.
    6. Zhou, Ella & Cole, Wesley & Frew, Bethany, 2018. "Valuing variable renewable energy for peak demand requirements," Energy, Elsevier, vol. 165(PA), pages 499-511.
    7. Lilliestam, Johan & Barradi, Touria & Caldés, Natalia & Gomez, Marta & Hanger, Susanne & Kern, Jürgen & Komendantova, Nadejda & Mehos, Mark & Hong, Wai Mun & Wang, Zhifeng & Patt, Anthony, 2018. "Policies to keep and expand the option of concentrating solar power for dispatchable renewable electricity," Energy Policy, Elsevier, vol. 116(C), pages 193-197.
    8. Bhattacharya, Suparna & Giannakas, Konstantinos & Schoengold, Karina, 2017. "Market and welfare effects of renewable portfolio standards in United States electricity markets," Energy Economics, Elsevier, vol. 64(C), pages 384-401.
    9. Wagner, Michael J. & Newman, Alexandra M. & Hamilton, William T. & Braun, Robert J., 2017. "Optimized dispatch in a first-principles concentrating solar power production model," Applied Energy, Elsevier, vol. 203(C), pages 959-971.
    10. David Borge-Diez & Enrique Rosales-Asensio & Ana I. Palmero-Marrero & Emin Acikkalp, 2022. "Optimization of CSP Plants with Thermal Energy Storage for Electricity Price Stability in Spot Markets," Energies, MDPI, vol. 15(5), pages 1-25, February.
    11. Fabio Maria Aprà & Sander Smit & Raymond Sterling & Tatiana Loureiro, 2021. "Overview of the Enablers and Barriers for a Wider Deployment of CSP Tower Technology in Europe," Clean Technol., MDPI, vol. 3(2), pages 1-18, April.
    12. Martinek, Janna & Jorgenson, Jennie & Mehos, Mark & Denholm, Paul, 2018. "A comparison of price-taker and production cost models for determining system value, revenue, and scheduling of concentrating solar power plants," Applied Energy, Elsevier, vol. 231(C), pages 854-865.
    13. del Río, Pablo & Peñasco, Cristina & Mir-Artigues, Pere, 2018. "An overview of drivers and barriers to concentrated solar power in the European Union," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1019-1029.
    14. Stefan Pfenninger & Paul Gauché & Johan Lilliestam & Kerstin Damerau & Fabian Wagner & Anthony Patt, 2014. "Potential for concentrating solar power to provide baseload and dispatchable power," Nature Climate Change, Nature, vol. 4(8), pages 689-692, August.
    15. Norambuena-Guzmán, Valentina & Palma-Behnke, Rodrigo & Hernández-Moris, Catalina & Cerda, Maria Teresa & Flores-Quiroz, Ángela, 2024. "Towards CSP technology modeling in power system expansion planning," Applied Energy, Elsevier, vol. 364(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Damien Bazin & Nouri Chtourou & Amna Omri, 2019. "Risk management and policy implications for concentrating solar power technology investments in Tunisia," Post-Print hal-02061788, HAL.
    2. Rovense, Francesco & Pinnarelli, Anna & González-Aguilar, José & Romero, Manuel & Brusco, Giovanni & Vizza, Pasquale & Menniti, Daniele & Sorrentino, Nicola & Dufour, Javier, 2025. "Assessment of dispatching scenarios for a multi-tower concentrating solar power plant in a Renewable Energy Community," Applied Energy, Elsevier, vol. 382(C).
    3. Norambuena-Guzmán, Valentina & Palma-Behnke, Rodrigo & Hernández-Moris, Catalina & Cerda, Maria Teresa & Flores-Quiroz, Ángela, 2024. "Towards CSP technology modeling in power system expansion planning," Applied Energy, Elsevier, vol. 364(C).
    4. Hahn Menacho, A.J. & Rodrigues, J.F.D. & Behrens, P., 2022. "A triple bottom line assessment of concentrated solar power generation in China and Europe 2020–2050," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    5. Hoz, Jordi de la & Martín, Helena & Montalà, Montserrat & Matas, José & Guzman, Ramon, 2018. "Assessing the 2014 retroactive regulatory framework applied to the concentrating solar power systems in Spain," Applied Energy, Elsevier, vol. 212(C), pages 1377-1399.
    6. Vasallo, Manuel Jesús & Cojocaru, Emilian Gelu & Gegúndez, Manuel Emilio & Marín, Diego, 2021. "Application of data-based solar field models to optimal generation scheduling in concentrating solar power plants," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 190(C), pages 1130-1149.
    7. Maycon Figueira Magalhães & Boniface Dominick Mselle & Francisca Galindo, 2025. "Decision-Making and Selection Framework for Potential Implementation of Concentrated Solar Power Technologies: Case Study," Energies, MDPI, vol. 18(7), pages 1-24, March.
    8. Ji, Junping & Tang, Hua & Jin, Peng, 2019. "Economic potential to develop concentrating solar power in China: A provincial assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    9. Islam, Md Tasbirul & Huda, Nazmul & Abdullah, A.B. & Saidur, R., 2018. "A comprehensive review of state-of-the-art concentrating solar power (CSP) technologies: Current status and research trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 987-1018.
    10. Abiodun, Kehinde & Hood, Karoline & Cox, John L. & Newman, Alexandra M. & Zolan, Alex J., 2023. "The value of concentrating solar power in ancillary services markets," Applied Energy, Elsevier, vol. 334(C).
    11. McPherson, Madeleine & Mehos, Mark & Denholm, Paul, 2020. "Leveraging concentrating solar power plant dispatchability: A review of the impacts of global market structures and policy," Energy Policy, Elsevier, vol. 139(C).
    12. Kahvecioğlu, Gökçe & Morton, David P. & Wagner, Michael J., 2022. "Dispatch optimization of a concentrating solar power system under uncertain solar irradiance and energy prices," Applied Energy, Elsevier, vol. 326(C).
    13. George A. Gonzalez, 2016. "Transforming Energy: Solving Climate Change with Technology Policy . New York : Cambridge University Press . 360 pages. ISBN 9781107614970, $29.99 paperback. Anthony Patt , 2015 ," Review of Policy Research, Policy Studies Organization, vol. 33(1), pages 111-113, January.
    14. Murphy, C.A. & Schleifer, A. & Eurek, K., 2021. "A taxonomy of systems that combine utility-scale renewable energy and energy storage technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    15. Pfenninger, Stefan & Keirstead, James, 2015. "Comparing concentrating solar and nuclear power as baseload providers using the example of South Africa," Energy, Elsevier, vol. 87(C), pages 303-314.
    16. Danish, Syed Noman & Al-Ansary, Hany & El-Leathy, Abdelrahman & Ba-Abbad, Mazen & Khan, Salah Ud-Din & Rizvi, Arslan & Orfi, Jamel & Al-Nakhli, Ahmed, 2022. "Experimental and techno-economic analysis of two innovative solar thermal receiver designs for a point focus solar Fresnel collector," Energy, Elsevier, vol. 261(PA).
    17. Viebahn, Peter & Daniel, Vallentin & Samuel, Höller, 2012. "Integrated assessment of carbon capture and storage (CCS) in the German power sector and comparison with the deployment of renewable energies," Applied Energy, Elsevier, vol. 97(C), pages 238-248.
    18. Fichter, Tobias & Soria, Rafael & Szklo, Alexandre & Schaeffer, Roberto & Lucena, Andre F.P., 2017. "Assessing the potential role of concentrated solar power (CSP) for the northeast power system of Brazil using a detailed power system model," Energy, Elsevier, vol. 121(C), pages 695-715.
    19. Reza Nadimi & Masahito Takahashi & Koji Tokimatsu & Mika Goto, 2024. "The Reliability and Profitability of Virtual Power Plant with Short-Term Power Market Trading and Non-Spinning Reserve Diesel Generator," Energies, MDPI, vol. 17(9), pages 1-19, April.
    20. Usaola, Julio, 2012. "Participation of CSP plants in the reserve markets: A new challenge for regulators," Energy Policy, Elsevier, vol. 49(C), pages 562-571.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:19:p:8785-:d:1761891. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.