IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i19p8696-d1759461.html
   My bibliography  Save this article

Analysis of the Efficiency and Environmental Impact of Municipal Solid Waste Incineration as a Tool for Sustainability Development in Kazakhstan

Author

Listed:
  • Sergey A. Glazyrin

    (Department of Chemistry, L.N. Gumilyov Eurasian National University, 2 Satbaev Str., Astana 010000, Kazakhstan)

  • Eldar E. Kopishev

    (Department of Chemistry, L.N. Gumilyov Eurasian National University, 2 Satbaev Str., Astana 010000, Kazakhstan)

  • Mikhail G. Zhumagulov

    (Department of Thermal Power Engineering, L.N. Gumilyov Eurasian National University, 2 Satbaev Str., Astana 010000, Kazakhstan)

  • Zarina A. Bimurzina

    (Department of Prospective Development of Power Plants and Boiler Houses of “Astana-Energy” JSC, “Baikonyr” District Industrial Zone of TPP-2, Astana 010000, Kazakhstan)

  • Yelaman K. Aibuldinov

    (Department of Chemistry, L.N. Gumilyov Eurasian National University, 2 Satbaev Str., Astana 010000, Kazakhstan)

Abstract

Municipal solid waste (MSW) disposal is one of the areas of sustainability development of modern countries including the Republic of Kazakhstan. Annually, more than 4 million tons of MSW are generated, and this amount continues to grow. Additionally, approximately 120 million tons of waste have already accumulated in landfills across the country. It is essential to select an MSW disposal technology that is environmentally friendly, minimizes the generation of more hazardous waste, and maximizes energy efficiency. Ideally, the technology should not only reduce energy consumption but also generate energy and valuable by-products that have market demand. The aim of this study is to conduct experimental research to evaluate the efficiency and environmental impact of incinerating both unsorted and sorted municipal solid waste. As a result of the experiment, the volumes of flue gases and the concentrations of harmful substances produced by the combustion of both unsorted and sorted waste were determined. Additionally, an analysis of the slag and ash generated from the combustion of sorted MSW was conducted. The obtained results enable the development of a waste-free technological scheme for a plant designed for the complete utilization of municipal solid waste.

Suggested Citation

  • Sergey A. Glazyrin & Eldar E. Kopishev & Mikhail G. Zhumagulov & Zarina A. Bimurzina & Yelaman K. Aibuldinov, 2025. "Analysis of the Efficiency and Environmental Impact of Municipal Solid Waste Incineration as a Tool for Sustainability Development in Kazakhstan," Sustainability, MDPI, vol. 17(19), pages 1-21, September.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:19:p:8696-:d:1759461
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/19/8696/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/19/8696/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Malinauskaite, J. & Jouhara, H. & Czajczyńska, D. & Stanchev, P. & Katsou, E. & Rostkowski, P. & Thorne, R.J. & Colón, J. & Ponsá, S. & Al-Mansour, F. & Anguilano, L. & Krzyżyńska, R. & López, I.C. & , 2017. "Municipal solid waste management and waste-to-energy in the context of a circular economy and energy recycling in Europe," Energy, Elsevier, vol. 141(C), pages 2013-2044.
    2. Aigul Nukusheva & Dinara Rustembekova & Aitugan Abdizhami & Tatyana Au & Zhaukhar Kozhantayeva, 2023. "Regulatory Obstacles in Municipal Solid Waste Management in Kazakhstan in Comparison with the EU," Sustainability, MDPI, vol. 15(2), pages 1-15, January.
    3. Sergey A. Glazyrin & Yelaman K. Aibuldinov & Eldar E. Kopishev & Mikhail G. Zhumagulov & Zarina A. Bimurzina, 2024. "Analysis of the Composition and Properties of Municipal Solid Waste from Various Cities in Kazakhstan," Energies, MDPI, vol. 17(24), pages 1-24, December.
    4. Laura Levaggi & Rosella Levaggi & Carmen Marchiori & Carmine Trecroci, 2020. "Waste-to-Energy in the EU: The Effects of Plant Ownership, Waste Mobility, and Decentralization on Environmental Outcomes and Welfare," Sustainability, MDPI, vol. 12(14), pages 1-12, July.
    5. Peter Tauš & Zuzana Šimková & Michal Cehlár & Ivana Krajňáková & Július Drozda, 2023. "Fulfillment of EU Goals in the Field of Waste Management through Energy Recovery from Waste," Energies, MDPI, vol. 16(4), pages 1-18, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Madurai Elavarasan, Rajvikram & Pugazhendhi, Rishi & Irfan, Muhammad & Mihet-Popa, Lucian & Khan, Irfan Ahmad & Campana, Pietro Elia, 2022. "State-of-the-art sustainable approaches for deeper decarbonization in Europe – An endowment to climate neutral vision," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    2. Zhai, Jihua & Burke, Ian T. & Stewart, Douglas I., 2021. "Beneficial management of biomass combustion ashes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    3. Nketiah, Emmanuel & Song, Huaming & Cai, Xiang & Adjei, Mavis & Adu-Gyamfi, Gibbson & Obuobi, Bright, 2022. "Citizens’ intention to invest in municipal solid waste to energy projects in Ghana: The impact of direct and indirect effects," Energy, Elsevier, vol. 254(PC).
    4. Corina Pelau & Alexandra Catalina Chinie, 2018. "Econometric Model for Measuring the Impact of the Education Level of the Population on the Recycling Rate in a Circular Economy," The AMFITEATRU ECONOMIC journal, Academy of Economic Studies - Bucharest, Romania, vol. 20(48), pages 340-340.
    5. Di Foggia, Giacomo & Beccarello, Massimo, 2021. "Drivers of municipal solid waste management cost based on cost models inherent to sorted and unsorted waste," SocArXiv s6q3m, Center for Open Science.
    6. Di Foggia, Giacomo & Beccarello, Massimo, 2021. "Designing waste management systems to meet circular economy goals: The Italian case," MPRA Paper 105959, University Library of Munich, Germany.
    7. Halkos, George & Managi, Shunsuke, 2023. "New developments in the disciplines of environmental and resource economics," Economic Analysis and Policy, Elsevier, vol. 77(C), pages 513-522.
    8. Konrad Siegfried & Susann Günther & Sara Mengato & Fabian Riedel & Daniela Thrän, 2023. "Boosting Biowaste Valorisation—Do We Need an Accelerated Regional Implementation of the European Law for End-of-Waste?," Sustainability, MDPI, vol. 15(17), pages 1-13, September.
    9. Emmanuel D. Adamides & Konstantinos Georgousoglou & Yannis Mouzakitis, 2023. "Designing a Flexible and Adaptive Municipal Waste Management Organisation Using the Viable System Model," Sustainability, MDPI, vol. 15(18), pages 1-24, September.
    10. repec:aud:audfin:v:20:y:2018:i:48:p:340 is not listed on IDEAS
    11. Soltanian, Salman & Kalogirou, Soteris A. & Ranjbari, Meisam & Amiri, Hamid & Mahian, Omid & Khoshnevisan, Benyamin & Jafary, Tahereh & Nizami, Abdul-Sattar & Gupta, Vijai Kumar & Aghaei, Siavash & Pe, 2022. "Exergetic sustainability analysis of municipal solid waste treatment systems: A systematic critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    12. Tahereh Malmir & Saeed Ranjbar & Ursula Eicker, 2020. "Improving Municipal Solid Waste Management Strategies of Montréal (Canada) Using Life Cycle Assessment and Optimization of Technology Options," Energies, MDPI, vol. 13(21), pages 1-15, October.
    13. Davor Mance & Siniša Vilke & Borna Debelić, 2020. "Sustainable Governance of Coastal Areas and Tourism Impact on Waste Production: Panel Analysis of Croatian Municipalities," Sustainability, MDPI, vol. 12(18), pages 1-16, September.
    14. Tariq Javed & Fareyha Said & Dalilawati Zainal & Azlina Abdul Jalil, 2024. "Circular Economy Implementation Status of Selected ASEAN Countries," SAGE Open, , vol. 14(1), pages 21582440231, March.
    15. Pere Ariza-Montobbio & Susana Herrero Olarte, 2021. "Socio-metabolic profiles of electricity consumption along the rural–urban continuum of Ecuador: Whose energy sovereignty?," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(5), pages 7961-7995, May.
    16. Vlasopoulos, Antonis & Malinauskaite, Jurgita & Żabnieńska-Góra, Alina & Jouhara, Hussam, 2023. "Life cycle assessment of plastic waste and energy recovery," Energy, Elsevier, vol. 277(C).
    17. Ding, Li-Li & Lei, Liang & Zhao, Xin & Calin, Adrian Cantemir, 2020. "Modelling energy and carbon emission performance: A constrained performance index measure," Energy, Elsevier, vol. 197(C).
    18. Marco Abis & Martina Bruno & Kerstin Kuchta & Franz-Georg Simon & Raul Grönholm & Michel Hoppe & Silvia Fiore, 2020. "Assessment of the Synergy between Recycling and Thermal Treatments in Municipal Solid Waste Management in Europe," Energies, MDPI, vol. 13(23), pages 1-15, December.
    19. Sergey Zhironkin & Michal Cehlár, 2023. "Economic and Technological Advances of Green Energy and Sustainable Development: The Overview," Energies, MDPI, vol. 16(10), pages 1-6, May.
    20. Elena Cristina Rada & Elena Romenovna Magaril & Marco Schiavon & Anzhelika Karaeva & Maxim Chashchin & Vincenzo Torretta, 2020. "MSW Management in Universities: Sharing Best Practices," Sustainability, MDPI, vol. 12(12), pages 1-15, June.
    21. Dzintra Atstaja & Natalija Cudecka-Purina & Viktor Koval & Jekaterina Kuzmina & Janis Butkevics & Hanna Hrinchenko, 2024. "Waste-to-Energy in the Circular Economy Transition and Development of Resource-Efficient Business Models," Energies, MDPI, vol. 17(16), pages 1-23, August.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:19:p:8696-:d:1759461. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.