IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i19p8678-d1759168.html
   My bibliography  Save this article

Performance, Combustion, and Emission Characteristics of a Diesel Engine Fueled with Preheated Coffee Husk Oil Methyl Ester (CHOME) Biodiesel Blends

Author

Listed:
  • Kumlachew Yeneneh

    (Department of Motor Engineering, College of Engineering, Ethiopian Defence University, Bishoftu P.O. Box 1041, Ethiopia)

  • Gadisa Sufe

    (Faculty of Mechanical Engineering, Wrocław University of Science and Technology, 50-370 Wroclaw, Poland)

  • Zbigniew J. Sroka

    (Faculty of Mechanical Engineering, Wrocław University of Science and Technology, 50-370 Wroclaw, Poland)

Abstract

The growing dependence on fossil fuels has raised concerns over energy security, resource depletion, and environmental impacts, driving the need for renewable alternatives. Coffee husk, a widely available agro-industrial residue, represents an underutilized feedstock for biodiesel production. In this study, biodiesel was synthesized from coffee husk oil using a two-step transesterification process to address its high free fatty acid content (21%). Physicochemical analysis showed that Coffee Husk Oil Methyl Ester (CHOME) possessed a density of 863 kg m −3 , viscosity of 4.85 cSt, and calorific value of 33.51 MJ kg −1 , compared to diesel with 812 kg m −3 , 2.3 cSt, and 42.4 MJ kg −1 . FTIR analysis confirmed the presence of ester carbonyl and C–O functional groups characteristic of CHOME, influencing its combustion behavior. Engine tests were then conducted using B0, B10, B30, B50, and B100 blends under different loads, both with and without fuel preheating. Results showed that neat CHOME (B100) exhibited 11.8% lower brake thermal efficiency (BTE) than diesel, but preheating at 95 °C improved BTE by 5%, with preheated B10 slightly surpassing diesel by 0.5%. Preheating also reduced brake-specific fuel consumption by up to 7.75%. Emission analysis revealed that B100 achieved reductions of 6.4% CO, 8.3% HC, and 7.0% smoke opacity, while NOx increased only marginally (2.86%). Overall, fuel preheating effectively mitigated viscosity-related drawbacks, enabling coffee husk biodiesel to deliver competitive performance with lower emissions, highlighting its potential as a sustainable waste-to-energy fuel.

Suggested Citation

  • Kumlachew Yeneneh & Gadisa Sufe & Zbigniew J. Sroka, 2025. "Performance, Combustion, and Emission Characteristics of a Diesel Engine Fueled with Preheated Coffee Husk Oil Methyl Ester (CHOME) Biodiesel Blends," Sustainability, MDPI, vol. 17(19), pages 1-27, September.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:19:p:8678-:d:1759168
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/19/8678/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/19/8678/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ziming Wang & Yanlin Chen & Chao He & Dongge Wang & Yan Nie & Jiaqiang Li, 2025. "Effect of Improved Combustion Chamber Design and Biodiesel Blending on the Performance and Emissions of a Diesel Engine," Energies, MDPI, vol. 18(11), pages 1-26, June.
    2. Adem Siraj Mohammed & Venkata Ramayya Ancha & Samson Mekbib Atnaw & Melaku Desta & Ramchandra Bhandari, 2025. "Analysis of Cylinder Pressure and Heat Release Rate Variation in Diesel Engine Fueled with Croton Macrostachyus (CMS) Seed Oil Biodiesel as an Alternative Fuel," Energies, MDPI, vol. 18(6), pages 1-27, March.
    3. Zulqarnain & Muhammad Ayoub & Mohd Hizami Mohd Yusoff & Muhammad Hamza Nazir & Imtisal Zahid & Mariam Ameen & Farooq Sher & Dita Floresyona & Eduardus Budi Nursanto, 2021. "A Comprehensive Review on Oil Extraction and Biodiesel Production Technologies," Sustainability, MDPI, vol. 13(2), pages 1-28, January.
    4. Kodate, Shankar Vitthal & Satyanarayana Raju, Pragada & Yadav, Ajay Kumar & Kumar, G.N., 2021. "Investigation of preheated Dhupa seed oil biodiesel as an alternative fuel on the performance, emission and combustion in a CI engine," Energy, Elsevier, vol. 231(C).
    5. Lee, Seokhwan & Woo, Sang Hee & Kim, Yongrae & Choi, Young & Kang, Kernyong, 2020. "Combustion and emission characteristics of a diesel-powered generator running with N-butanol/coffee ground pyrolysis oil/diesel blended fuel," Energy, Elsevier, vol. 206(C).
    6. Rozzeta Dolah & Rohit Karnik & Halimaton Hamdan, 2021. "A Comprehensive Review on Biofuels from Oil Palm Empty Bunch (EFB): Current Status, Potential, Barriers and Way Forward," Sustainability, MDPI, vol. 13(18), pages 1-29, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Al-Muraisy, Saqr A.A. & Chuayboon, Srirat & Soares, Lais Americo & Buijnsters, J.G. & Ismail, Shahrul bin & Abanades, Stéphane & van Lier, Jules B. & Lindeboom, Ralph E.F., 2025. "Carbon capture through solar-driven CO2 gasification of oil palm empty fruit bunch to produce syngas and biochar," Energy, Elsevier, vol. 323(C).
    2. Fanta Barry & Marie Sawadogo & Maïmouna Bologo (Traoré) & Igor W. K. Ouédraogo & Thomas Dogot, 2021. "Key Barriers to the Adoption of Biomass Gasification in Burkina Faso," Sustainability, MDPI, vol. 13(13), pages 1-14, June.
    3. Muthukumar, K. & Kasiraman, G., 2024. "Utilization of fuel energy from single-use Low-density polyethylene plastic waste on CI engine with hydrogen enrichment – An experimental study," Energy, Elsevier, vol. 289(C).
    4. Betgeri, Vikram & Bhardwaj, Om Parkash & Pischinger, Stefan, 2023. "Investigation of the drop-in capabilities of a renewable 1-Octanol based E-fuel for heavy-duty engine applications," Energy, Elsevier, vol. 282(C).
    5. Frederick Sarpong & Bashiru Adams & Frederick Danso & Charlotte Oduro-Yeboah, 2025. "Circular Economy of Oil Palm for Achieving Sustainable Development Goals (SDGs) among Artisans in Ghana – A Review," Circular Economy and Sustainability, Springer, vol. 5(3), pages 2527-2545, June.
    6. Cédric Decarpigny & Abdulhadi Aljawish & Cédric His & Bertrand Fertin & Muriel Bigan & Pascal Dhulster & Michel Millares & Rénato Froidevaux, 2022. "Bioprocesses for the Biodiesel Production from Waste Oils and Valorization of Glycerol," Energies, MDPI, vol. 15(9), pages 1-30, May.
    7. Maleki, Basir & Esmaeili, Hossein, 2023. "Ultrasound-assisted conversion of waste frying oil into biodiesel using Al-doped ZnO nanocatalyst: Box-Behnken design-based optimization," Renewable Energy, Elsevier, vol. 209(C), pages 10-26.
    8. Rahmath Abdulla & Eryati Derman & Thivyasri K.Mathialagan & Abu Zahrim Yaser & Mohd Armi Abu Samah & Jualang Azlan Gansau & Syed Umar Faruq Syed Najmuddin, 2022. "Biodiesel Production from Waste Palm Cooking Oil Using Immobilized Candida rugosa Lipase," Sustainability, MDPI, vol. 14(20), pages 1-18, October.
    9. Mulkan, Andi & Mohd Zulkifli, Nurin Wahidah & Husin, Husni & Ahmadi, & Dahlan, Irvan, 2024. "Performance and emissions assessment under full load operation of an unmodified diesel engine running on biodiesel-based waste cooking oil synthesized using JPW solid catalyst," Renewable Energy, Elsevier, vol. 224(C).
    10. Evangelia N. Sossidou & Georgios F. Banias & Maria Batsioula & Sofia-Afroditi Termatzidou & Panagiotis Simitzis & Sotiris I. Patsios & Donald M. Broom, 2025. "Modern Pig Production: Aspects of Animal Welfare, Sustainability and Circular Bioeconomy," Sustainability, MDPI, vol. 17(11), pages 1-27, June.
    11. Seferlis, Panos & Varbanov, Petar Sabev & Papadopoulos, Athanasios I. & Chin, Hon Huin & Klemeš, Jiří Jaromír, 2021. "Sustainable design, integration, and operation for energy high-performance process systems," Energy, Elsevier, vol. 224(C).
    12. Kulvendra Patel & S. K. Singh, 2025. "Sustainable biodiesel from used cooking oil: a comparative life cycle, energy, and uncertainty analysis," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 27(6), pages 14755-14780, June.
    13. Wirawan, Soni S. & Solikhah, Maharani D. & Setiapraja, Hari & Sugiyono, Agus, 2024. "Biodiesel implementation in Indonesia: Experiences and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    14. Wang, Yu & van de Beld, Bert & Florijn, Jan & Holle, Elmar & Scheer, Rick & Maes, Noud & Somers, Bart, 2025. "Application of fast pyrolysis bio-oil in a genset engine for combined heat and power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 211(C).
    15. Imtisal Zahid & Muhammad Ayoub & Bawadi Bin Abdullah & Muhammad Hamza Nazir & Zulqarnain & Mariam Ameen Kaimkhani & Farooq Sher, 2021. "Activation of Nano Kaolin Clay for Bio-Glycerol Conversion to a Valuable Fuel Additive," Sustainability, MDPI, vol. 13(5), pages 1-17, March.
    16. Su, Guangcan & Mohd Zulkifli, Nurin Wahidah & Ong, Hwai Chyuan & Ibrahim, Shaliza & Bu, Quan & Zhu, Ruonan, 2022. "Pyrolysis of oil palm wastes for bioenergy in Malaysia: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    17. Hyeongtak Ko & Myeongjong Lee & Rumduol Sen & Jeongwoo Choi & Seacheon Oh, 2025. "Pyrolysis Characteristics of Empty Fruit Bunches at Different Temperatures and Heating Rates," Energies, MDPI, vol. 18(6), pages 1-18, March.
    18. Atreyi Pramanik & Anis Ahmad Chaudhary & Aashna Sinha & Kundan Kumar Chaubey & Mohammad Saquib Ashraf & Nosiba Suliman Basher & Hassan Ahmad Rudayni & Deen Dayal & Sanjay Kumar, 2023. "Nanocatalyst-Based Biofuel Generation: An Update, Challenges and Future Possibilities," Sustainability, MDPI, vol. 15(7), pages 1-17, April.
    19. Balla M. Ahmed & Maji Luo & Hassan A. M. Elbadawi & Nasreldin M. Mahmoud & Pang-Chieh Sui, 2025. "Experimental Investigation of 2-Ethylhexyl Nitrate Effects on Engine Performance and Exhaust Emissions in Biodiesel-2-Methylfuran Blend for Diesel Engine," Energies, MDPI, vol. 18(11), pages 1-16, May.
    20. Mateusz Jackowski & Łukasz Niedźwiecki & Krzysztof Mościcki & Amit Arora & Muhammad Azam Saeed & Krystian Krochmalny & Jakub Pawliczek & Anna Trusek & Magdalena Lech & Jan Skřínský & Jakub Čespiva & J, 2021. "Synergetic Co-Production of Beer Colouring Agent and Solid Fuel from Brewers’ Spent Grain in the Circular Economy Perspective," Sustainability, MDPI, vol. 13(18), pages 1-17, September.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:19:p:8678-:d:1759168. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.