IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i19p8676-d1759128.html
   My bibliography  Save this article

Spatiotemporal Evolution and Multi-Scale Driving Mechanisms of Ecosystem Service Value in Wuhan, China

Author

Listed:
  • Yi Sun

    (Hubei Key Laboratory of Biologic Resources Protection and Utilization, Hubei Minzu University, Enshi 445000, China
    School of Forestry and Horticulture, Hubei Minzu University, Enshi 445000, China)

  • Xuxi Fang

    (Hubei Key Laboratory of Biologic Resources Protection and Utilization, Hubei Minzu University, Enshi 445000, China
    School of Forestry and Horticulture, Hubei Minzu University, Enshi 445000, China)

  • Diwei Tang

    (Hubei Key Laboratory of Biologic Resources Protection and Utilization, Hubei Minzu University, Enshi 445000, China
    School of Forestry and Horticulture, Hubei Minzu University, Enshi 445000, China)

  • Yubo Hu

    (Hubei Key Laboratory of Biologic Resources Protection and Utilization, Hubei Minzu University, Enshi 445000, China
    School of Forestry and Horticulture, Hubei Minzu University, Enshi 445000, China)

Abstract

This study examined the spatiotemporal dynamics and driving mechanisms of ecosystem service value (ESV) in Wuhan from 1985 to 2020. Using multi-temporal land-use data, remotely sensed vegetation indices, and socioeconomic statistics, we estimated the ESV with an improved equivalent-factor method and analyzed its drivers using a Geodetector and geographically weighted regression (GWR). Over the 35-year period, total ESV for Wuhan showed a mildly declining trend, decreasing from CNY 37.464 billion in 1985 to CNY 36.439 billion in 2020. Waterbodies contributed the largest share of ESV, followed by croplands and forests. In the urban core, ESV declined significantly, with low-value zones expanding outward from the city center. Spatial autocorrelation analysis revealed significant “high–high” and “low–low” clustering. Geodetector results indicated slope, elevation, and normalized difference vegetation index (NDVI) as the primary natural drivers, with human footprint, gross domestic product (GDP), and population density acting as important socioeconomic auxiliaries. Interactions between natural and socioeconomic factors substantially increased the explanatory power. Furthermore, GWR revealed pronounced spatial heterogeneity in the sign and magnitude of the factor effects across the study area, underscoring the complexity of ESV drivers. These findings provide quantitative evidence to support spatially differentiated ecological planning and conservation strategies during urbanization in Wuhan and the broader mid-Yangtze region.

Suggested Citation

  • Yi Sun & Xuxi Fang & Diwei Tang & Yubo Hu, 2025. "Spatiotemporal Evolution and Multi-Scale Driving Mechanisms of Ecosystem Service Value in Wuhan, China," Sustainability, MDPI, vol. 17(19), pages 1-25, September.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:19:p:8676-:d:1759128
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/19/8676/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/19/8676/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Costanza, Robert & d'Arge, Ralph & de Groot, Rudolf & Farber, Stephen & Grasso, Monica & Hannon, Bruce & Limburg, Karin & Naeem, Shahid & O'Neill, Robert V. & Paruelo, Jose, 1998. "The value of the world's ecosystem services and natural capital," Ecological Economics, Elsevier, vol. 25(1), pages 3-15, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nunes, P.A.L.D. & Nijkamp, P., 2011. "Biodiversity: Economic perspectives," Serie Research Memoranda 0002, VU University Amsterdam, Faculty of Economics, Business Administration and Econometrics.
    2. Hendrawan, Dienda C P & Musshoff, Oliver, 2022. "Oil Palm Smallholder Farmers' Livelihood Resilience and Decision Making in Replanting," 2024 Annual Meeting, July 28-30, New Orleans, LA 322441, Agricultural and Applied Economics Association.
    3. Man-Jing Li & Jia-Xu Han & Mao Zhu & Yuan-Biao Zhang, 2019. "The True Valuation of Land Use Project in China Considering Ecosystem Services," Modern Applied Science, Canadian Center of Science and Education, vol. 13(10), pages 1-46, October.
    4. Ping Shen & Lijuan Wu & Ziwen Huo & Jiaying Zhang, 2023. "A Study on the Spatial Pattern of the Ecological Product Value of China’s County-Level Regions Based on GEP Evaluation," IJERPH, MDPI, vol. 20(4), pages 1-18, February.
    5. van der Hoff, Richard & Nascimento, Nathália & Fabrício-Neto, Ailton & Jaramillo-Giraldo, Carolina & Ambrosio, Geanderson & Arieira, Julia & Afonso Nobre, Carlos & Rajão, Raoni, 2022. "Policy-oriented ecosystem services research on tropical forests in South America: A systematic literature review," Ecosystem Services, Elsevier, vol. 56(C).
    6. Evans, Nicole M. & Carrozzino-Lyon, Amy L. & Galbraith, Betsy & Noordyk, Julia & Peroff, Deidre M. & Stoll, John & Thompson, Aaron & Winden, Matthew W. & Davis, Mark A., 2019. "Integrated ecosystem service assessment for landscape conservation design in the Green Bay watershed, Wisconsin," Ecosystem Services, Elsevier, vol. 39(C).
    7. Desbureaux, Sébastien & Brimont, Laura, 2015. "Between economic loss and social identity: The multi-dimensional cost of avoiding deforestation in Eastern Madagascar," Ecological Economics, Elsevier, vol. 118(C), pages 10-20.
    8. Shrestha, Ram K. & Seidl, Andrew F. & Moraes, Andre S., 2002. "Value of recreational fishing in the Brazilian Pantanal: a travel cost analysis using count data models," Ecological Economics, Elsevier, vol. 42(1-2), pages 289-299, August.
    9. Guo, Jianke & Dong, Mengru & Zheng, Miaozhuang & Han, Zenglin & Li, Fujia, 2023. "The composition and evaluation of the strategic value of high seas resources: A theoretical model based on the human–sea relationship," Resources Policy, Elsevier, vol. 81(C).
    10. Sangha, Kamaljit K & Evans, Jay & Edwards, Andrew & Russell-Smith, Jeremy & Fisher, Rohan & Yates, Cameron & Costanza, Robert, 2021. "Assessing the value of ecosystem services delivered by prescribed fire management in Australian tropical savannas," Ecosystem Services, Elsevier, vol. 51(C).
    11. Dai, Xuhuan & Li, Bo & Zheng, Hua & Yang, Yanzheng & Yang, Zihan & Peng, Chenchen, 2023. "Can sedentarization decrease the dependence of pastoral livelihoods on ecosystem services?," Ecological Economics, Elsevier, vol. 203(C).
    12. Xiangdan Piao & Xinxin Ma & Tetsuya Tsurumi & Shunsuke Managi, 2022. "Social Capital, Negative Event, Life Satisfaction and Sustainable Community: Evidence from 37 Countries," Applied Research in Quality of Life, Springer;International Society for Quality-of-Life Studies, vol. 17(3), pages 1311-1330, June.
    13. Sébastien Desbureaux & Eric Nazindigouba Kere & Pascale Combes Motel, 2016. "Impact Evaluation in a Landscape: Protected Natural Forests, Anthropized Forested Lands and Deforestation Leakages in Madagascar's Rainforests," Working Papers halshs-01342182, HAL.
    14. Carlos Gustavo Machicado & Beatriz Muriel & Luis Carlos Jemio, 2010. "Aporte de los Servicios Ecosistémicos silvícolas a la Economía Boliviana," Development Research Working Paper Series 12/2010, Institute for Advanced Development Studies.
    15. Shuai Guan & Qi Liao & Wenjun Wu & Chuan Yi & Yueming Gao, 2022. "Revealing the Coupling Relationship between the Gross Ecosystem Product and Economic Growth: A Case Study of Hubei Province," Sustainability, MDPI, vol. 14(13), pages 1-15, June.
    16. Shaokang Fu & Lin Zhao & Zhi Qiao & Tong Sun & Meng Sun & Yuying Hao & Siyu Hu & Yanchang Zhang, 2021. "Development of Ecosystem Health Assessment (EHA) and Application Method: A Review," Sustainability, MDPI, vol. 13(21), pages 1-17, October.
    17. Magalhães Filho, L.N.L. & Roebeling, P.C. & Costa, L.F.C. & de Lima, L.T., 2022. "Ecosystem services values at risk in the Atlantic coastal zone due to sea-level rise and socioeconomic development," Ecosystem Services, Elsevier, vol. 58(C).
    18. Lili Du & Yunbing Hou & Shuheng Zhong & Kai Qu, 2023. "Identification of Priority Areas for Ecological Restoration in Coal Mining Areas with a High Groundwater Table Based on Ecological Security Pattern and Ecological Vulnerability," Sustainability, MDPI, vol. 16(1), pages 1-22, December.
    19. Klaus Keller & Kelvin Tan & Francois M.M. Morel & David F. Bradford, 1999. "Preserving the Ocean Circulation: Implications for Climate Policy," CESifo Working Paper Series 199, CESifo.
    20. Jiayi Zhou & Kangning Xiong & Qi Wang & Jiuhan Tang & Li Lin, 2022. "A Review of Ecological Assets and Ecological Products Supply: Implications for the Karst Rocky Desertification Control," IJERPH, MDPI, vol. 19(16), pages 1-20, August.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:19:p:8676-:d:1759128. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.