IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i19p8586-d1757389.html
   My bibliography  Save this article

The Impact of Transfer Case Parameters on the Tractive Efficiency of Heavy Off-Road Vehicles

Author

Listed:
  • Damian Stefanow

    (Department of Fundamentals of Machine Design and Mechatronic Systems, Faculty of Mechanical Engineering, Wroclaw University of Science and Technology, 27 Wybrzeże Wyspiańskiego St., 50-370 Wrocław, Poland)

Abstract

One of the key issues in vehicle sustainability is their energy efficiency. The article concerns the complex issue of predicting the tractive efficiency of heavy off-road vehicles depending on the parameters of the transfer case. As part of the research, a mathematical model of an off-road truck with simplified drive system was developed and implemented in MATLAB/Simulink environment. Multiple simulations for various parameters were performed. Based on the simulation results, efficiency maps were plotted depending on parameters such as the friction coefficient in the differential mechanism, torque bias of the differential, load distribution and drawbar pull of the vehicle. The results showed that the vehicle generally achieves the highest traction efficiency with the differential operating in locked condition and confirmed that the optimal torque bias is close to the load ratio. However, taking into account the multipass effect shifts this value towards the front wheel, while taking into account the bulldozing effect shifts it towards the rear wheel. Simulated vehicle showed higher efficiency when heavily loaded at higher differential friction, while when lightly loaded, higher efficiency at lower friction. Thanks to its high degree of parameterization, this model can be used to help optimize the drive train of off-road vehicles traveling in various terrains from the energy consumption point of view, leading to more sustainable operation.

Suggested Citation

  • Damian Stefanow, 2025. "The Impact of Transfer Case Parameters on the Tractive Efficiency of Heavy Off-Road Vehicles," Sustainability, MDPI, vol. 17(19), pages 1-30, September.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:19:p:8586-:d:1757389
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/19/8586/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/19/8586/
    Download Restriction: no
    ---><---

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:19:p:8586-:d:1757389. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.