Author
Listed:
- C. Pearline Kamalini
(Department of Electrical and Electronics Engineering, Saranathan College of Engineering, Tiruchirapalli 620012, India)
- M. V. Suganyadevi
(Department of Electrical and Electronics Engineering, Saranathan College of Engineering, Tiruchirapalli 620012, India)
Abstract
In the current energy landscape, power quality (PQ) emerges as a critical concern. Even when there is no fault on a line, PQ issues are common in all power networks since 90% of power systems’ loads are variable or inductive in nature. Variable loads cannot be avoided; hence, PQ concerns such as voltage swelling and sag will always arise. Voltage sag is one of the main issues within a distribution network, resulting in financial losses for the utility company and the customer. The Dynamic Voltage Restorer (DVR) effectively addresses voltage sags and minimizes total harmonic distortion (THD) in the distribution network. This paper proposed a novel control strategy to increase the PQ in a system. A Frilled Lizard Optimization-optimized fuzzy PI controller is proposed in this work to control the inverter. This proposed method improves the DVR’s ability to correct voltage sag and reduce total harmonic distortion as soon as possible. The PI control scheme is utilized initially to reduce the oscillations and remove the steady-state error. To increase the tendency rate of the error to zero, the PI method is applied to a fuzzy logic-based compensatory stage. The proposed approach is validated using pro-type models, as well as mathematical and Simulink modelling. In the Results Section, the performance of the proposed controllers with the DVR is tabulated and compared with other DVR controller schemes described in other research papers.
Suggested Citation
C. Pearline Kamalini & M. V. Suganyadevi, 2025.
"Frilled Lizard Optimization Control Strategy of Dynamic Voltage Restorer-Based Power Quality Enhancement,"
Sustainability, MDPI, vol. 17(19), pages 1-13, September.
Handle:
RePEc:gam:jsusta:v:17:y:2025:i:19:p:8573-:d:1757159
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:19:p:8573-:d:1757159. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.