Author
Listed:
- Yunbo Wei
(School of Earth Sciences and Engineering, Hohai University, Nanjing 211100, China)
- Rongfu Zhong
(Zhejiang Environmental Technology Co., Ltd., Hangzhou 311000, China)
- Yun Yang
(School of Earth Sciences and Engineering, Hohai University, Nanjing 211100, China)
Abstract
Groundwater fluoride contamination poses a significant threat to sustainable water resources and public health, yet conventional water quality analysis is both time-consuming and costly, making large-scale, sustainable monitoring challenging. Machine learning methods offer a promising, cost-effective, and sustainable alternative for assessing the spatial distribution of fluoride. This study aimed to develop and compare the performance of Random Forest (RF), Support Vector Machine (SVM), and Artificial Neural Network (ANN) models for predicting groundwater fluoride contamination in the Datong Basin with the help of satellite embeddings from the AlphaEarth Foundation. Data from 391 groundwater sampling points were utilized, with the dataset partitioned into training (80%) and testing (20%) sets. The ANOVA F-value of each feature was calculated for feature selection, identifying surface elevation, pollution, population, evaporation, vertical distance to the rivers, distance to the Sanggan river, and nine extra bands from the satellite embeddings as the most relevant input variables. Model performance was evaluated using the confusion matrix and the area under the receiver operating characteristic curve (ROC-AUC). The results showed that the SVM model demonstrated the highest ROC-AUC (0.82), outperforming the RF (0.80) and MLP (0.77) models. The introduction of satellite embeddings improved the performance of all three models significantly, with the prediction errors decreasing by 13.8% to 23.3%. The SVM model enhanced by satellite embeddings proved to be a robust and reliable tool for predicting groundwater fluoride contamination, highlighting its potential for use in sustainable groundwater management.
Suggested Citation
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:18:p:8505-:d:1755180. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.