IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i18p8438-d1753752.html
   My bibliography  Save this article

Environmental Impact Assessment of Logging Residue Utilization for Increased Bioenergy Production from Scots Pine Forest Stands in Lithuania Using a Life Cycle Approach

Author

Listed:
  • Laurynas Virbickas

    (Institute of Environmental Engineering, Kaunas University of Technology, 44239 Kaunas, Lithuania)

  • Irina Kliopova

    (Institute of Environmental Engineering, Kaunas University of Technology, 44239 Kaunas, Lithuania)

  • Edgaras Stunžėnas

    (Institute of Environmental Engineering, Kaunas University of Technology, 44239 Kaunas, Lithuania)

Abstract

The strategic importance of forest biomass as a renewable energy source is growing across the EU, driven by climate goals, energy security, and the abundance of logging residues. While logging waste offers considerable potential for bioenergy production, its life cycle environmental impacts remain insufficiently understood. This study evaluates the impacts of utilizing Scots pine ( Pinus sylvestris ) logging residues for energy production in Lithuania using a comparative life cycle assessment (LCA). Two harvesting scenarios were assessed at midpoint and endpoint levels: one excluding and one including logging residues. The results show that about 173.2 tons of biofuels can be produced from one hectare of Scots pine forest over a 100-year cycle, generating up to 513.6 MWh of energy when residues are utilized. The LCA revealed improvements in 9 of 18 impact categories, with greenhouse gas avoidance increasing from –52 to –89.5 t CO 2 eq, and overall endpoint impacts decreasing by nearly 39%. The novelty of this study lies in applying established LCA methods with region- and species-specific data, partly obtained through monitoring, for Scots pine residues in Lithuania, while extending system boundaries to include soil degradation, storage losses, and ash management—providing a more holistic and Northern Europe-relevant perspective.

Suggested Citation

  • Laurynas Virbickas & Irina Kliopova & Edgaras Stunžėnas, 2025. "Environmental Impact Assessment of Logging Residue Utilization for Increased Bioenergy Production from Scots Pine Forest Stands in Lithuania Using a Life Cycle Approach," Sustainability, MDPI, vol. 17(18), pages 1-21, September.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:18:p:8438-:d:1753752
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/18/8438/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/18/8438/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ondřej Špulák & Dušan Kacálek, 2020. "How different approaches to logging residues handling affected retention of nutrients at poor-soil Scots pine site after clear-cutting? A case study," Journal of Forest Science, Czech Academy of Agricultural Sciences, vol. 66(11), pages 461-470.
    2. Brassard, P. & Godbout, S. & Hamelin, L., 2021. "Framework for consequential life cycle assessment of pyrolysis biorefineries: A case study for the conversion of primary forestry residues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    3. Anna Kożuch & Dominika Cywicka & Aleksandra Górna, 2024. "Forest Biomass in Bioenergy Production in the Changing Geopolitical Environment of the EU," Energies, MDPI, vol. 17(3), pages 1-20, January.
    4. Raghu KC & Mika Aalto & Olli-Jussi Korpinen & Tapio Ranta & Svetlana Proskurina, 2020. "Lifecycle Assessment of Biomass Supply Chain with the Assistance of Agent-Based Modelling," Sustainability, MDPI, vol. 12(5), pages 1-14, March.
    5. Fengli Zhang & Dana M. Johnson & Jinjiang Wang, 2015. "Life-Cycle Energy and GHG Emissions of Forest Biomass Harvest and Transport for Biofuel Production in Michigan," Energies, MDPI, vol. 8(4), pages 1-14, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yek, Peter Nai Yuh & Cheng, Yoke Wang & Liew, Rock Keey & Wan Mahari, Wan Adibah & Ong, Hwai Chyuan & Chen, Wei-Hsin & Peng, Wanxi & Park, Young-Kwon & Sonne, Christian & Kong, Sieng Huat & Tabatabaei, 2021. "Progress in the torrefaction technology for upgrading oil palm wastes to energy-dense biochar: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    2. Tianran Ding & Wouter Achten, 2023. "Coupling agent-based modeling with territorial LCA to support agricultural land-use planning," ULB Institutional Repository 2013/359527, ULB -- Universite Libre de Bruxelles.
    3. De Boeck, Kim & Decouttere, Catherine & Jónasson, Jónas Oddur & Vandaele, Nico, 2022. "Vaccine supply chains in resource-limited settings: Mitigating the impact of rainy season disruptions," European Journal of Operational Research, Elsevier, vol. 301(1), pages 300-317.
    4. Haji Esmaeili, Seyed Ali & Szmerekovsky, Joseph & Sobhani, Ahmad & Dybing, Alan & Peterson, Tim O., 2020. "Sustainable biomass supply chain network design with biomass switching incentives for first-generation bioethanol producers," Energy Policy, Elsevier, vol. 138(C).
    5. Raghava Rao Kommalapati & Iqbal Hossan & Venkata Sai Vamsi Botlaguduru & Hongbo Du & Ziaul Huque, 2018. "Life Cycle Environmental Impact of Biomass Co-Firing with Coal at a Power Plant in the Greater Houston Area," Sustainability, MDPI, vol. 10(7), pages 1-18, June.
    6. Groppi, Daniele & Pastore, Lorenzo Mario & Nastasi, Benedetto & Prina, Matteo Giacomo & Astiaso Garcia, Davide & de Santoli, Livio, 2025. "Energy modelling challenges for the full decarbonisation of hard-to-abate sectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 209(C).
    7. Andrade Díaz, Christhel & Albers, Ariane & Zamora-Ledezma, Ezequiel & Hamelin, Lorie, 2024. "The interplay between bioeconomy and the maintenance of long-term soil organic carbon stock in agricultural soils: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    8. Pettersson, Malin & Olofsson, Johanna & Börjesson, Pål & Björnsson, Lovisa, 2022. "Reductions in greenhouse gas emissions through innovative co-production of bio-oil in combined heat and power plants," Applied Energy, Elsevier, vol. 324(C).
    9. Mehta, Neha & Anderson, Aine & Johnston, Christopher R. & Rooney, David W., 2022. "Evaluating the opportunity for utilising anaerobic digestion and pyrolysis of livestock manure and grass silage to decarbonise gas infrastructure: A Northern Ireland case study," Renewable Energy, Elsevier, vol. 196(C), pages 343-357.
    10. Kiehbadroudinezhad, Mohammadali & Hosseinzadeh-Bandbafha, Homa & Varjani, Sunita & Wang, Yajing & Peng, Wanxi & Pan, Junting & Aghbashlo, Mortaza & Tabatabaei, Meisam, 2023. "Marine shell-based biorefinery: A sustainable solution for aquaculture waste valorization," Renewable Energy, Elsevier, vol. 206(C), pages 623-634.
    11. Tahereh Soleymani Angili & Katarzyna Grzesik & Wojciech Jerzak, 2023. "Comparative Life Cycle Assessment of Catalytic Intermediate Pyrolysis of Rapeseed Meal," Energies, MDPI, vol. 16(4), pages 1-16, February.
    12. Zhaoyuan He & Paul Turner, 2021. "A Systematic Review on Technologies and Industry 4.0 in the Forest Supply Chain: A Framework Identifying Challenges and Opportunities," Logistics, MDPI, vol. 5(4), pages 1-22, December.
    13. Youngjin Kim & Sojung Kim, 2025. "Optimization and Simulation in Biofuel Supply Chain," Energies, MDPI, vol. 18(5), pages 1-24, February.
    14. Seyed Ali Haji Esmaeili & Ahmad Sobhani & Sajad Ebrahimi & Joseph Szmerekovsky & Alan Dybing & Amin Keramati, 2023. "Location Allocation of Biorefineries for a Switchgrass-Based Bioethanol Supply Chain Using Energy Consumption and Emissions," Logistics, MDPI, vol. 7(1), pages 1-22, January.
    15. Olli-Jussi Korpinen & Mika Aalto & Raghu KC & Timo Tokola & Tapio Ranta, 2023. "Utilisation of Spatial Data in Energy Biomass Supply Chain Research—A Review," Energies, MDPI, vol. 16(2), pages 1-23, January.
    16. Islam Hassanin & Matjaz Knez, 2022. "Managing Supply Chain Activities in the Field of Energy Production Focusing on Renewables," Sustainability, MDPI, vol. 14(12), pages 1-33, June.
    17. Alessio Ilari & Sara Fabrizi & Ester Foppa Pedretti, 2022. "European Hophornbeam Biomass for Energy Application: Influence of Different Production Processes and Heating Devices on Environmental Sustainability," Resources, MDPI, vol. 11(2), pages 1-15, January.
    18. Zhang, Fengli & Johnson, Dana M. & Wang, Jinjiang, 2016. "Integrating multimodal transport into forest-delivered biofuel supply chain design," Renewable Energy, Elsevier, vol. 93(C), pages 58-67.
    19. Shiyu Chen & Wei Wang & Enrico Zio, 2021. "A Simulation-Based Multi-Objective Optimization Framework for the Production Planning in Energy Supply Chains," Energies, MDPI, vol. 14(9), pages 1-27, May.
    20. Zalazar-Garcia, Daniela & Fernandez, Anabel & Rodriguez-Ortiz, Leandro & Torres, Erick & Reyes-Urrutia, Andrés & Echegaray, Marcelo & Rodriguez, Rosa & Mazza, Germán, 2022. "Exergo-ecological analysis and life cycle assessment of agro-wastes using a combined simulation approach based on Cape-Open to Cape-Open (COCO) and SimaPro free-software," Renewable Energy, Elsevier, vol. 201(P1), pages 60-71.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:18:p:8438-:d:1753752. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.