IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i18p8389-d1752815.html
   My bibliography  Save this article

Sustainable Transportation Optimisation of Waste Electrical and Electronic Equipment Using AI-Based Evolutionary Algorithms

Author

Listed:
  • Jorge A. Ruiz-Vanoye

    (Dirección de Investigación, Innovación y Posgrado, Universidad Politécnica de Pachuca, Carretera Pachuca—Cd. Sahagún km 20, Ex-Hacienda de Santa Bárbara, Zempoala 43830, Mexico)

  • Ocotlán Díaz-Parra

    (Dirección de Investigación, Innovación y Posgrado, Universidad Politécnica de Pachuca, Carretera Pachuca—Cd. Sahagún km 20, Ex-Hacienda de Santa Bárbara, Zempoala 43830, Mexico)

  • Francisco R. Trejo-Macotela

    (Dirección de Investigación, Innovación y Posgrado, Universidad Politécnica de Pachuca, Carretera Pachuca—Cd. Sahagún km 20, Ex-Hacienda de Santa Bárbara, Zempoala 43830, Mexico)

  • José M. Liceaga-Ortiz-De-La-Peña

    (Dirección de Investigación, Innovación y Posgrado, Universidad Politécnica de Pachuca, Carretera Pachuca—Cd. Sahagún km 20, Ex-Hacienda de Santa Bárbara, Zempoala 43830, Mexico)

  • Myrna Lezama León

    (Doctorado en Planeación Estratégica y Dirección de Tecnología, Universidad Popular Autónoma del Estado de Pue-bla, Puebla 72410, Mexico)

  • Evangelina Lezama León

    (Doctorado en Planeación Estratégica y Dirección de Tecnología, Universidad Popular Autónoma del Estado de Pue-bla, Puebla 72410, Mexico)

  • Jaime Aguilar-Ortiz

    (Dirección de Investigación, Innovación y Posgrado, Universidad Politécnica de Pachuca, Carretera Pachuca—Cd. Sahagún km 20, Ex-Hacienda de Santa Bárbara, Zempoala 43830, Mexico)

  • Alejandro Fuentes-Penna

    (El Colegio de Morelos, Av. Morelos Sur 154, Esquina Con Amates, Colonia Las Palmas, Cuernavaca 62050, Mexico)

Abstract

Waste Electrical and Electronic Equipment (WEEE) management is a critical global challenge. This study proposes a model for the WEEE Transportation Problem using advanced evolutionary algorithms such as the Genetic Algorithm (GA), the Offspring-Selected Genetic Algorithm (OSGA), the Evolution Strategy (ES), and the Offspring-Selected Evolution Strategy (OSES). These algorithms, which are part of the field of Artificial Intelligence (AI), are applied to optimise transportation routes, minimising time and costs, and promoting sustainability by reducing the carbon footprint. Test instances and solutions are presented to demonstrate the feasibility of the model and the effectiveness of the proposed algorithms. Rather than providing technical detail, the focus is placed on the novelty of applying these algorithms to the WEEE Transportation Problem in Mexico, particularly for minimising operational cost. While reductions in carbon emissions are discussed as a natural consequence of cost optimisation, a formal dual-objective formulation is beyond the present scope and is identified as a direction for future work.

Suggested Citation

  • Jorge A. Ruiz-Vanoye & Ocotlán Díaz-Parra & Francisco R. Trejo-Macotela & José M. Liceaga-Ortiz-De-La-Peña & Myrna Lezama León & Evangelina Lezama León & Jaime Aguilar-Ortiz & Alejandro Fuentes-Penna, 2025. "Sustainable Transportation Optimisation of Waste Electrical and Electronic Equipment Using AI-Based Evolutionary Algorithms," Sustainability, MDPI, vol. 17(18), pages 1-27, September.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:18:p:8389-:d:1752815
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/18/8389/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/18/8389/
    Download Restriction: no
    ---><---

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:18:p:8389-:d:1752815. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.