IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i18p8253-d1749172.html
   My bibliography  Save this article

Development Dynamics and Influencing Factors of China’s Agricultural Green Ecological Efficiency Based on an Evaluation Model Incorporating Ecosystem Service Value and Carbon Emissions

Author

Listed:
  • Yuxuan Wang

    (Business School, Hohai University, Nanjing 211100, China)

  • Ze Tian

    (Business School, Hohai University, Nanjing 211100, China
    Low Carbon Economy Research Institute, Hohai University, Nanjing 210098, China)

  • Xiaodong Jing

    (Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of China, Nanjing 210042, China)

  • Mengyao Li

    (Asia Institute, The University of Melbourne, Melbourne, VIC 3010, Australia
    School of Environment, Education and Development, University of Manchester, Manchester M13 9PL, UK)

Abstract

Sustainable agricultural development requires ensuring food security while preserving essential ecological conditions. This study incorporated ecosystem service value and carbon emissions as the positive and negative ecological outputs of agriculture, respectively, to account for the AGEE of 31 Chinese provinces from 2012 to 2021 and to analyse its spatiotemporal characteristics. The Malmquist Index was employed to calculate the green total factor productivity (GTP) as a quantitative indicator of AGEE dynamics, providing further insights into the sources and equilibrium of AGEE growth, as well as provincial-level improvement paths. Furthermore, the Spatial Durbin Model was applied to systematically analyse the influencing factors and their associated spatial spillover effects. The results show the following: (1) AGEE demonstrated steady improvement, with a mean value of 0.576, and was spatially concentrated along a northeast–southwest axis, exhibiting regional disparities and polarisation. (2) GTP consistently exceeded 1, indicating overall AGEE growth, primarily driven by technological scale expansion. Regional imbalances in AGEE growth had emerged, with heterogeneous causes across economic regions. Three identified AGEE improvement paths—technological catch-up, green innovation, and technological progress—varied by province, with green innovation being the most common priority. (3) AGEE exhibited spatial autocorrelation, with rural income, adequate irrigation, and cropping structure promoting AGEE. Effective irrigation also exhibited a positive spatial spillover effect, whereas industrial structure hindered AGEE. These findings provide valuable insights for advancing green agricultural practices and sustainable regional development.

Suggested Citation

  • Yuxuan Wang & Ze Tian & Xiaodong Jing & Mengyao Li, 2025. "Development Dynamics and Influencing Factors of China’s Agricultural Green Ecological Efficiency Based on an Evaluation Model Incorporating Ecosystem Service Value and Carbon Emissions," Sustainability, MDPI, vol. 17(18), pages 1-31, September.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:18:p:8253-:d:1749172
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/18/8253/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/18/8253/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lee, Chien-Chiang & Qian, Anqi, 2024. "Regional differences, dynamic evolution, and obstacle factors of cultivated land ecological security in China," Socio-Economic Planning Sciences, Elsevier, vol. 94(C).
    2. Huaping Guan & Binhua Guo & Jianwu Zhang, 2022. "Study on the Impact of the Digital Economy on the Upgrading of Industrial Structures—Empirical Analysis Based on Cities in China," Sustainability, MDPI, vol. 14(18), pages 1-18, September.
    3. Ting Wang & Jing Wu & Jianghua Liu, 2024. "Regional Differences, Dynamic Evolution, and Convergence of Global Agricultural Energy Efficiency," Agriculture, MDPI, vol. 14(8), pages 1-29, August.
    4. Rui Zhang & Lingling Zhang & Meijuan He & Zongzhi Wang, 2023. "Spatial Association Network and Driving Factors of Agricultural Eco-Efficiency in the Hanjiang River Basin, China," Agriculture, MDPI, vol. 13(6), pages 1-16, May.
    5. Kuang, Bing & Lu, Xinhai & Zhou, Min & Chen, Danling, 2020. "Provincial cultivated land use efficiency in China: Empirical analysis based on the SBM-DEA model with carbon emissions considered," Technological Forecasting and Social Change, Elsevier, vol. 151(C).
    6. Tao, Jieyi & Lu, Yuqi & Ge, Dazhuan & Dong, Ping & Gong, Xiao & Ma, Xiaobin, 2022. "The spatial pattern of agricultural ecosystem services from the production-living-ecology perspective: A case study of the Huaihai Economic Zone, China," Land Use Policy, Elsevier, vol. 122(C).
    7. Zhaoliang Li & Minghao Jin & Jianwei Cheng, 2021. "Economic growth of green agriculture and its influencing factors in china: Based on emergy theory and spatial econometric model," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(10), pages 15494-15512, October.
    8. Houjian Li & Xiaolei Zhou & Mengqian Tang & Lili Guo, 2022. "Impact of Population Aging and Renewable Energy Consumption on Agricultural Green Total Factor Productivity in Rural China: Evidence from Panel VAR Approach," Agriculture, MDPI, vol. 12(5), pages 1-19, May.
    9. Pengfei Ge & Tan Liu & Xiaoxu Wu & Xiulu Huang, 2023. "Heterogenous Urbanization and Agricultural Green Development Efficiency: Evidence from China," Sustainability, MDPI, vol. 15(7), pages 1-22, March.
    10. Qixuan Zhang & Yuxin Yang & Xue Li & Pingping Wang, 2024. "Digitalization and Agricultural Green Total Factor Productivity: Evidence from China," Agriculture, MDPI, vol. 14(10), pages 1-13, October.
    11. Yuelin Zheng & Mingquan Wang & Xiaohua Ma & Chunhua Zhu & Qibing Gao, 2024. "The Dynamic Relationship Between Industrial Structure Upgrading and Carbon Emissions: New Evidence from Chinese Provincial Data," Sustainability, MDPI, vol. 16(22), pages 1-19, November.
    12. Mingjia Chi & Qinyang Guo & Lincheng Mi & Guofeng Wang & Weiming Song, 2022. "Spatial Distribution of Agricultural Eco-Efficiency and Agriculture High-Quality Development in China," Land, MDPI, vol. 11(5), pages 1-15, May.
    13. Kun Xie & Mingjun Ding & Jianrong Zhang & Liwen Chen, 2021. "Trends towards Coordination between Grain Production and Economic Development in China," Agriculture, MDPI, vol. 11(10), pages 1-17, October.
    14. K Tone, 2002. "A strange case of the cost and allocative efficiencies in DEA," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 53(11), pages 1225-1231, November.
    15. Guanghe Han & Jiahui Xu & Xin Zhang & Xin Pan, 2024. "Efficiency and Driving Factors of Agricultural Carbon Emissions: A Study in Chinese State Farms," Agriculture, MDPI, vol. 14(9), pages 1-22, August.
    16. Shao-Yin Hsu & Chih-Yu Yang & Yueh-Ling Chen & Ching-Cheng Lu, 2023. "Agricultural Efficiency in Different Regions of China: An Empirical Analysis Based on Dynamic SBM-DEA Model," Sustainability, MDPI, vol. 15(9), pages 1-17, April.
    17. Jie Huang & Hongyang Lu & Minzhe Du, 2025. "Regional Differences in Agricultural Carbon Emissions in China: Measurement, Decomposition, and Influencing Factors," Land, MDPI, vol. 14(4), pages 1-25, March.
    18. Lara Waltersmann & Steffen Kiemel & Julian Stuhlsatz & Alexander Sauer & Robert Miehe, 2021. "Artificial Intelligence Applications for Increasing Resource Efficiency in Manufacturing Companies—A Comprehensive Review," Sustainability, MDPI, vol. 13(12), pages 1-26, June.
    19. Shili Guo & Zhiyong Hu & Hanzhe Ma & Dingde Xu & Renwei He, 2022. "Spatial and Temporal Variations in the Ecological Efficiency and Ecosystem Service Value of Agricultural Land in China," Agriculture, MDPI, vol. 12(6), pages 1-23, June.
    20. Chivu, Luminita & Andrei, Jean Vasile & Zaharia, Marian & Gogonea, Rodica-Manuela, 2020. "A regional agricultural efficiency convergence assessment in Romania – Appraising differences and understanding potentials," Land Use Policy, Elsevier, vol. 99(C).
    21. Shilin Li & Zhiyuan Zhu & Zhenzhong Dai & Jiajia Duan & Danmeng Wang & Yongzhong Feng, 2022. "Temporal and Spatial Differentiation and Driving Factors of China’s Agricultural Eco-Efficiency Considering Agricultural Carbon Sinks," Agriculture, MDPI, vol. 12(10), pages 1-17, October.
    22. Lingui Qin & Yan Zhang & Yige Wang & Xinning Pan & Zhe Xu, 2024. "Research on the Impact of Digital Green Finance on Agricultural Green Total Factor Productivity: Evidence from China," Agriculture, MDPI, vol. 14(7), pages 1-23, July.
    23. Rolf Färe & Shawna Grosskopf & Dimitri Margaritis, 2006. "Productivity Growth and Convergence in the European Union," Journal of Productivity Analysis, Springer, vol. 25(1), pages 111-141, April.
    24. Lin, Boqiang & Bai, Rui, 2020. "Dynamic energy performance evaluation of Chinese textile industry," Energy, Elsevier, vol. 199(C).
    25. Yumei Zhang & Jingjing Wang & Shenggen Fan, 2025. "Healthy and Sustainable Diets in China and Their Global Implications," Agricultural Economics, International Association of Agricultural Economists, vol. 56(3), pages 349-359, May.
    26. You, Jiansheng & Hu, Jin & Jiang, Bing, 2024. "The correlation evolution and formation mechanism of energy ecological efficiency in China: A spatial network approach," Energy, Elsevier, vol. 313(C).
    27. Danilo Đokić & Tihomir Novaković & Dragana Tekić & Bojan Matkovski & Stanislav Zekić & Dragan Milić, 2022. "Technical Efficiency of Agriculture in the European Union and Western Balkans: SFA Method," Agriculture, MDPI, vol. 12(12), pages 1-18, November.
    28. Lindikaya W. Myeki & Nicolette Matthews & Yonas T. Bahta, 2023. "Decomposition of Green Agriculture Productivity for Policy in Africa: An Application of Global Malmquist–Luenberger Index," Sustainability, MDPI, vol. 15(2), pages 1-17, January.
    29. Shixiong Song & Siyuan Zhao & Ye Zhang & Yongxi Ma, 2023. "Carbon Emissions from Agricultural Inputs in China over the Past Three Decades," Agriculture, MDPI, vol. 13(5), pages 1-12, April.
    30. Tone, Kaoru, 2001. "A slacks-based measure of efficiency in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 130(3), pages 498-509, May.
    31. Liu, Chenyu & Song, Changqing & Ye, Sijing & Cheng, Feng & Zhang, Leina & Li, Chao, 2023. "Estimate provincial-level effectiveness of the arable land requisition-compensation balance policy in mainland China in the last 20 years," Land Use Policy, Elsevier, vol. 131(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hui Yang & Jingye Li & Stefan Sieber & Kaisheng Long, 2025. "Does Digital Village Construction Affect the Sustainable Intensification of Cultivated Land Use? Evidence from Rural China," Agriculture, MDPI, vol. 15(9), pages 1-24, April.
    2. Shiying Zhu & Jiawen Huang & Yansong Li & Paravee Maneejuk & Jianxu Liu, 2024. "A Non-Linear Exploration of the Digital Economy’s Impact on Agricultural Carbon Emission Efficiency in China," Agriculture, MDPI, vol. 14(12), pages 1-22, December.
    3. Ewa Szafraniec-Siluta & Agnieszka Strzelecka & Danuta Zawadzka, 2025. "Achieving Sustainable Development Goals: The Case of Farms in Poland," Agriculture, MDPI, vol. 15(17), pages 1-26, September.
    4. Guo, Baishu & Jin, Gui, 2025. "Beyond the land quantity: Rethinking the role of land quality in agriculture from the efficiency perspective," Socio-Economic Planning Sciences, Elsevier, vol. 98(C).
    5. Guannan Chen & Zhenhuang Yang & Shaohui Chen, 2020. "Measurement and Convergence Analysis of Inclusive Green Growth in the Yangtze River Economic Belt Cities," Sustainability, MDPI, vol. 12(6), pages 1-17, March.
    6. Xuan Liu & Xuexi Huo, 2024. "Green Finance, Land Transfer and China’s Agricultural Green Total Factor Productivity," Land, MDPI, vol. 13(12), pages 1-18, December.
    7. Tone, Kaoru & Tsutsui, Miki, 2007. "Decomposition of cost efficiency and its application to Japanese-US electric utility comparisons," Socio-Economic Planning Sciences, Elsevier, vol. 41(2), pages 91-106, June.
    8. Yongrok Choi & Hyoungsuk Lee & Hojin Jeong & Jahira Debbarma, 2023. "Urbanization Paradox of Environmental Policies in Korean Local Governments," Land, MDPI, vol. 12(2), pages 1-15, February.
    9. Feng Zhou & Chunhui Wen, 2023. "Research on the Level of Agricultural Green Development, Regional Disparities, and Dynamic Distribution Evolution in China from the Perspective of Sustainable Development," Agriculture, MDPI, vol. 13(7), pages 1-47, July.
    10. Bin Fan & Mingyang Li, 2022. "The Effect of Heterogeneous Environmental Regulations on Carbon Emission Efficiency of the Grain Production Industry: Evidence from China’s Inter-Provincial Panel Data," Sustainability, MDPI, vol. 14(21), pages 1-27, November.
    11. Guangyan Ran & Guangyao Wang & Huijuan Du & Mi Lv, 2023. "Relationship of Cooperative Management and Green and Low-Carbon Transition of Agriculture and Its Impacts: A Case Study of the Western Tarim River Basin," Sustainability, MDPI, vol. 15(11), pages 1-18, May.
    12. Weijuan Li & Jinyong Guo & Tian Xie, 2025. "Impact of Non-Agricultural Labor Transfer on the Ecological Efficiency of Cultivated Land: Evidence from China," Agriculture, MDPI, vol. 15(10), pages 1-22, May.
    13. Shilin Li & Zhiyuan Zhu & Zhenzhong Dai & Jiajia Duan & Danmeng Wang & Yongzhong Feng, 2022. "Temporal and Spatial Differentiation and Driving Factors of China’s Agricultural Eco-Efficiency Considering Agricultural Carbon Sinks," Agriculture, MDPI, vol. 12(10), pages 1-17, October.
    14. Luo Muchen & Rosita Hamdan & Rossazana Ab-Rahim, 2022. "Data-Driven Evaluation and Optimization of Agricultural Environmental Efficiency with Carbon Emission Constraints," Sustainability, MDPI, vol. 14(19), pages 1-22, September.
    15. Shi, Pengfei & Long, Huibing & Li, Yifei & Li, Xingming & Wang, Xinrui, 2025. "Agricultural green production efficiency within a green finance framework: Empirical evidence from China," International Review of Financial Analysis, Elsevier, vol. 97(C).
    16. Feng Ye & Zhongna Yang & Mark Yu & Susan Watson & Ashley Lovell, 2023. "Can Market-Oriented Reform of Agricultural Subsidies Promote the Growth of Agricultural Green Total Factor Productivity? Empirical Evidence from Maize in China," Agriculture, MDPI, vol. 13(2), pages 1-20, January.
    17. Mengchao Yao & Yihua Zhang, 2021. "Evaluation and Optimization of Urban Land-Use Efficiency: A Case Study in Sichuan Province of China," Sustainability, MDPI, vol. 13(4), pages 1-22, February.
    18. Nan Ke & Xupeng Zhang & Xinhai Lu & Bing Kuang & Bin Jiang, 2022. "Regional Disparities and Influencing Factors of Eco-Efficiency of Arable Land Utilization in China," Land, MDPI, vol. 11(2), pages 1-17, February.
    19. Kun Zeng & Xiong Duan & Bin Chen & Lanxi Jia, 2025. "Spatiotemporal Heterogeneity of Eco-Efficiency of Cultivated Land Use and Its Influencing Factors: Evidence from the Yangtze River Economic Belt, China," Sustainability, MDPI, vol. 17(7), pages 1-23, March.
    20. Xinhai Lu & Yifeng Tang & Shangan Ke, 2021. "Does the Construction and Operation of High-Speed Rail Improve Urban Land Use Efficiency? Evidence from China," Land, MDPI, vol. 10(3), pages 1-15, March.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:18:p:8253-:d:1749172. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.