IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i18p8217-d1748064.html
   My bibliography  Save this article

Enhancing Sustainable Mobility: A Comparative Analysis of C-ITS and Fundamental Diagram-Based Traffic Jam Detection

Author

Listed:
  • Angelo Coppola

    (Department of Civil, Building and Environmental Engineering, University of Naples Federico II, 80125 Naples, Italy)

  • Luca Di Costanzo

    (Department of Civil, Building and Environmental Engineering, University of Naples Federico II, 80125 Naples, Italy)

  • Andrea Marchetta

    (Department of Civil, Building and Environmental Engineering, University of Naples Federico II, 80125 Naples, Italy)

Abstract

Traffic congestion is a primary obstacle to sustainable mobility, leading to increased fuel consumption, harmful emissions, and significant economic losses. Effective and timely congestion detection is therefore a critical enabler for proactive traffic management strategies that can mitigate these negative impacts. This study contributes to this goal by conducting a rigorous comparative analysis of two key detection paradigms: a modern, vehicle-centric approach using a Cooperative Intelligent Transportation Systems (C-ITS) service, and a traditional, infrastructure-based method relying on the fundamental diagram (FD). Using a comprehensive simulation campaign on a bottleneck scenario, we evaluate the performance of both methods under various conditions. The results demonstrate that while the FD-based method can offer faster detection under optimal sensor placement for severe events, the C-ITS approach provides fundamentally greater spatial flexibility and reliability across a wider range of congestion severities. Our techno-economic analysis further reveals that the paradigms rely on distinct investment models, with C-ITS offering superior scalability and a promising path toward network-wide coverage. This highlights the complementary nature of the two approaches and underscores the potential of C-ITS as a key technology to support dynamic, efficient, and sustainable transportation networks.

Suggested Citation

  • Angelo Coppola & Luca Di Costanzo & Andrea Marchetta, 2025. "Enhancing Sustainable Mobility: A Comparative Analysis of C-ITS and Fundamental Diagram-Based Traffic Jam Detection," Sustainability, MDPI, vol. 17(18), pages 1-22, September.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:18:p:8217-:d:1748064
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/18/8217/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/18/8217/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ahn, Soyoung & Cassidy, Michael J. & Laval, Jorge, 2004. "Verification of a simplified car-following theory," Transportation Research Part B: Methodological, Elsevier, vol. 38(5), pages 431-440, June.
    2. Tianjun Feng & Keyi Liu & Chunyan Liang, 2023. "An Improved Cellular Automata Traffic Flow Model Considering Driving Styles," Sustainability, MDPI, vol. 15(2), pages 1-19, January.
    3. Kinjal Bhattacharyya & Pierre-Antoine Laharotte & Eleonore Fauchet & Hugues Blache & Nour-Eddin El Faouzi, 2024. "Enhancing Traffic Efficiency and Sustainability through Strategic Placement of Roadside Units and Variable Speed Limits in a Connected Vehicle Environment," Sustainability, MDPI, vol. 16(17), pages 1-16, August.
    4. Newell, G. F., 2002. "A simplified car-following theory: a lower order model," Transportation Research Part B: Methodological, Elsevier, vol. 36(3), pages 195-205, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Saif Eddin Jabari & Laura Wynter, 2016. "Sensor placement with time-to-detection guarantees," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 5(4), pages 415-433, December.
    2. Zhang, H.M. & Kim, T., 2005. "A car-following theory for multiphase vehicular traffic flow," Transportation Research Part B: Methodological, Elsevier, vol. 39(5), pages 385-399, June.
    3. Chen, Danjue & Laval, Jorge & Zheng, Zuduo & Ahn, Soyoung, 2012. "A behavioral car-following model that captures traffic oscillations," Transportation Research Part B: Methodological, Elsevier, vol. 46(6), pages 744-761.
    4. Guan, Hao & Wang, Hua & Meng, Qiang & Mak, Chin Long, 2023. "Markov chain-based traffic analysis on platooning effect among mixed semi- and fully-autonomous vehicles in a freeway lane," Transportation Research Part B: Methodological, Elsevier, vol. 173(C), pages 176-202.
    5. Tang, Qing & Hu, Xianbiao & Lu, Jiawei & Zhou, Xuesong, 2021. "Analytical characterization of multi-state effective discharge rates for bus-only lane conversion scheduling problem," Transportation Research Part B: Methodological, Elsevier, vol. 148(C), pages 106-131.
    6. Chiabaut, Nicolas & Leclercq, Ludovic & Buisson, Christine, 2010. "From heterogeneous drivers to macroscopic patterns in congestion," Transportation Research Part B: Methodological, Elsevier, vol. 44(2), pages 299-308, February.
    7. Xiqun (Michael) Chen & Zhiheng Li & Li Li & Qixin Shi, 2014. "A Traffic Breakdown Model Based on Queueing Theory," Networks and Spatial Economics, Springer, vol. 14(3), pages 485-504, December.
    8. Jabari, Saif Eddin & Zheng, Jianfeng & Liu, Henry X., 2014. "A probabilistic stationary speed–density relation based on Newell’s simplified car-following model," Transportation Research Part B: Methodological, Elsevier, vol. 68(C), pages 205-223.
    9. Zhao, Jing & Knoop, Victor L. & Wang, Meng, 2020. "Two-dimensional vehicular movement modelling at intersections based on optimal control," Transportation Research Part B: Methodological, Elsevier, vol. 138(C), pages 1-22.
    10. Laval, Jorge A. & Toth, Christopher S. & Zhou, Yi, 2014. "A parsimonious model for the formation of oscillations in car-following models," Transportation Research Part B: Methodological, Elsevier, vol. 70(C), pages 228-238.
    11. Ruru Xing & Yihan Zhang & Xiaoyu Cai & Jupeng Lu & Bo Peng & Tao Yang, 2023. "Vehicle-Trajectory Prediction Method for an Extra-Long Tunnel Based on Section Traffic Data," Sustainability, MDPI, vol. 15(8), pages 1-30, April.
    12. Taylor, Jeffrey & Zhou, Xuesong & Rouphail, Nagui M. & Porter, Richard J., 2015. "Method for investigating intradriver heterogeneity using vehicle trajectory data: A Dynamic Time Warping approach," Transportation Research Part B: Methodological, Elsevier, vol. 73(C), pages 59-80.
    13. Coifman, Benjamin, 2006. "Extracting More Information from the Existing Freeway Traffic Monitoring Infrastructure," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt34n479gz, Institute of Transportation Studies, UC Berkeley.
    14. Wei, Yuguang & Avcı, Cafer & Liu, Jiangtao & Belezamo, Baloka & Aydın, Nizamettin & Li, Pengfei(Taylor) & Zhou, Xuesong, 2017. "Dynamic programming-based multi-vehicle longitudinal trajectory optimization with simplified car following models," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 102-129.
    15. Han, Youngjun & Ahn, Soyoung, 2018. "Stochastic modeling of breakdown at freeway merge bottleneck and traffic control method using connected automated vehicle," Transportation Research Part B: Methodological, Elsevier, vol. 107(C), pages 146-166.
    16. Chen, Danjue & Ahn, Soyoung & Chitturi, Madhav & Noyce, David A., 2017. "Towards vehicle automation: Roadway capacity formulation for traffic mixed with regular and automated vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 100(C), pages 196-221.
    17. Li, Ye & Yin, Huiwen & Jin, Jieling & Chen, Chao, 2025. "Modeling of CAV-based variable speed limit strategy for expressway bottlenecks: An improved cell transmission model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 670(C).
    18. Jiang, Jiwan & Zhou, Yang & Wang, Xin & Ahn, Soyoung, 2024. "On dynamic fundamental diagrams: Implications for automated vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 189(C).
    19. Huanping Li & Jian Wang & Guopeng Bai & Xiaowei Hu, 2021. "Exploring the Distribution of Traffic Flow for Shared Human and Autonomous Vehicle Roads," Energies, MDPI, vol. 14(12), pages 1-21, June.
    20. Gong, Siyuan & Du, Lili, 2018. "Cooperative platoon control for a mixed traffic flow including human drive vehicles and connected and autonomous vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 116(C), pages 25-61.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:18:p:8217-:d:1748064. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.