Author
Listed:
- Artur Wolak
(Department of Quality and Safety of Industrial Products, Cracow University of Economics, Sienkiewicza 4 Str., 30-033 Krakow, Poland)
- Wojciech Krasodomski
(The Oil and Gas Institute—National Research Institute, Lubicz 25A, 31-509 Krakow, Poland)
Abstract
Engine oil condition critically affects vehicle performance, fuel efficiency, and engine durability. While conventional oil change strategies are based on fixed intervals or mileage thresholds, they often neglect real operating conditions and the actual state of lubricant degradation. This study investigates nine used engine oil samples collected from passenger vehicles operating in diverse environments, including city traffic, highway routes, hybrid systems, and diesel engines. The oils were assessed using kinematic viscosity measurements and Fourier transform infrared (FTIR) spectroscopy to monitor key degradation indicators—oxidation, nitration, sulfonation, fuel dilution, soot contamination, and additive depletion. Each case is fully documented with detailed operational histories, facilitating a nuanced, real-world understanding of oil aging. The results demonstrate that degradation levels vary considerably, even under similar mileage ranges, highlighting the influence of urban usage patterns and engine design. In several cases, premature or delayed oil changes were observed, confirming that standard service intervals may be suboptimal. FTIR proved effective in detecting subtle chemical transformations, particularly in samples affected by biofuel components or prolonged thermal stress. These findings emphasize the value of integrating laboratory diagnostics into oil change decision-making and support more tailored maintenance strategies. Such an approach can reduce unnecessary oil replacement, limit waste generation, and extend engine lifespan, contributing to both environmental and economic sustainability. This study supports the implementation of condition-based oil change strategies to minimize lubricant waste and promote maintenance practices aligned with sustainability principles.
Suggested Citation
Artur Wolak & Wojciech Krasodomski, 2025.
"Reducing Oil Waste Through Condition-Based Maintenance: A Diagnostic Study Using FTIR and Viscosity Monitoring,"
Sustainability, MDPI, vol. 17(18), pages 1-15, September.
Handle:
RePEc:gam:jsusta:v:17:y:2025:i:18:p:8214-:d:1747972
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:18:p:8214-:d:1747972. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.