IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i18p8110-d1745568.html

Is There a Historical Relationship Between Urban Growth and Resilience Loss? The Case of Floods in Belo Horizonte (Brazil)

Author

Listed:
  • Sergio Salazar-Galán

    (Laboratorio de Historia de los Agroecosistemas, Universidad Pablo de Olavide, Carretera de Utrera km 1, 41013 Sevilla, Spain)

  • Amanda Granha Magalhães Gomes e Silva

    (Departamento de Geografia, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627-Pampulha, Belo Horizonte 31270-901, Brazil)

  • Domingo Sánchez-Fuentes

    (Departamento de Urbanística y Ordenación del Territorio, Universidad de Sevilla, Avda. Reina Mercedes 2, 41012 Sevilla, Spain)

  • Emilio J. Mascort-Albea

    (Departamento de Estructuras de Edificación e Ingeniería del Terreno, Universidad de Sevilla, Avda. Reina Mercedes 2, 41012 Sevilla, Spain)

Abstract

Reducing the negative effects associated with floods in cities constitutes one of the highest-priority contemporary social challenges on the global sustainability agenda. In general, most historical studies focus on the consequences, but not on the causes of the phenomenon, which is essential for moving towards sustainable and resilient territories. The aim of this research is to quantify the effect that urban expansion has exerted on floods, taking the city of Belo Horizonte as a critical and representative case study. To this end, an integrative, qualitative, and quantitative approach has been developed, based on previous studies and on distributed hydrological modelling for the period 1940–2024. The results show that urban growth has contributed to a 7%, 14%, and 21% increase in the first three quartiles of annual floods. Likewise, the increase in the magnitude and frequency of the floods is also attributable, since it is more noticeable in the events of higher frequency than in those of lower frequency, in a range from 15% to 7%. The above results show the way in which the application of quantitative knowledge derived from the environmental history is highly useful for decision-making regarding the measures required to increase resilience, considering the possible effects of climate change. Thus, the recovery of the infiltration capacity of the soil constitutes a priority measure to reverse the effect that urban growth has exerted on the hydrological cycle.

Suggested Citation

  • Sergio Salazar-Galán & Amanda Granha Magalhães Gomes e Silva & Domingo Sánchez-Fuentes & Emilio J. Mascort-Albea, 2025. "Is There a Historical Relationship Between Urban Growth and Resilience Loss? The Case of Floods in Belo Horizonte (Brazil)," Sustainability, MDPI, vol. 17(18), pages 1-22, September.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:18:p:8110-:d:1745568
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/18/8110/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/18/8110/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tomislav Hengl & Jorge Mendes de Jesus & Gerard B M Heuvelink & Maria Ruiperez Gonzalez & Milan Kilibarda & Aleksandar Blagotić & Wei Shangguan & Marvin N Wright & Xiaoyuan Geng & Bernhard Bauer-Marsc, 2017. "SoilGrids250m: Global gridded soil information based on machine learning," PLOS ONE, Public Library of Science, vol. 12(2), pages 1-40, February.
    2. Henry Garzón Sánchez & Juan Carlos Loaiza Usuga & Jaime Ignacio Vélez Upégui, 2024. "Hydrological Response to Predominant Land Use and Land Cover in the Colombian Andes at the Micro-Watershed Scale," Land, MDPI, vol. 13(8), pages 1-24, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nina Tiel & Fabian Fopp & Philipp Brun & Johan Hoogen & Dirk Nikolaus Karger & Cecilia M. Casadei & Lisha Lyu & Devis Tuia & Niklaus E. Zimmermann & Thomas W. Crowther & Loïc Pellissier, 2024. "Regional uniqueness of tree species composition and response to forest loss and climate change," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    2. Elliott R. Dossou-Yovo & Sander J. Zwart & Amadou Kouyaté & Ibrahima Ouédraogo & Oladele Bakare, 2018. "Predictors of Drought in Inland Valley Landscapes and Enabling Factors for Rice Farmers’ Mitigation Measures in the Sudan-Sahel Zone," Sustainability, MDPI, vol. 11(1), pages 1-17, December.
    3. Linghua Qiu & Junhao He & Chao Yue & Philippe Ciais & Chunmiao Zheng, 2024. "Substantial terrestrial carbon emissions from global expansion of impervious surface area," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    4. Pierre Delmelle & Sébastien Biass & Mathilde Paque & Benjamin Lobet, 2025. "Explosive volcanic eruptions can act as carbon sinks," Nature Communications, Nature, vol. 16(1), pages 1-8, December.
    5. Huang, Yawen & Tao, Bo & Lal, Rattan & Lorenz, Klaus & Jacinthe, Pierre-Andre & Shrestha, Raj K. & Bai, Xiongxiong & Singh, Maninder P. & Lindsey, Laura E. & Ren, Wei, 2023. "A global synthesis of biochar's sustainability in climate-smart agriculture - Evidence from field and laboratory experiments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 172(C).
    6. Mark A. Anthony & Leho Tedersoo & Bruno Vos & Luc Croisé & Henning Meesenburg & Markus Wagner & Henning Andreae & Frank Jacob & Paweł Lech & Anna Kowalska & Martin Greve & Genoveva Popova & Beat Frey , 2024. "Fungal community composition predicts forest carbon storage at a continental scale," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    7. Tong Qiu & Robert Andrus & Marie-Claire Aravena & Davide Ascoli & Yves Bergeron & Roberta Berretti & Daniel Berveiller & Michal Bogdziewicz & Thomas Boivin & Raul Bonal & Don C. Bragg & Thomas Caignar, 2022. "Limits to reproduction and seed size-number trade-offs that shape forest dominance and future recovery," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    8. Joachim Maes & Adrián G. Bruzón & José I. Barredo & Sara Vallecillo & Peter Vogt & Inés Marí Rivero & Fernando Santos-Martín, 2023. "Accounting for forest condition in Europe based on an international statistical standard," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    9. Telmo José Mendes & Diego Silva Siqueira & Eduardo Barretto Figueiredo & Ricardo de Oliveira Bordonal & Mara Regina Moitinho & José Marques Júnior & Newton La Scala Jr., 2021. "Soil carbon stock estimations: methods and a case study of the Maranhão State, Brazil," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(11), pages 16410-16427, November.
    10. Joachim Eisenberg & Fabrice A. Muvundja, 2020. "Quantification of Erosion in Selected Catchment Areas of the Ruzizi River (DRC) Using the (R)USLE Model," Land, MDPI, vol. 9(4), pages 1-18, April.
    11. Jean-François Bastin & Nicolas Latte & Jan Bogaert & Claude A. Garcia & Fabio Berzaghi & Fernando T. Maestre & Jens-Christian Svenning & Emeline Assede & Sabas Barima & Timothée Besisa & Samuel Boucho, 2025. "Global alternatives of natural vegetation cover," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    12. Banerjee, Onil & Crossman, Neville & Vargas, Renato & Brander, Luke & Verburg, Peter & Cicowiez, Martin & Hauck, Jennifer & McKenzie, Emily, 2020. "Global socio-economic impacts of changes in natural capital and ecosystem services: State of play and new modeling approaches," Ecosystem Services, Elsevier, vol. 46(C).
    13. Sarah R. Weiskopf & Forest Isbell & Maria Isabel Arce-Plata & Moreno Di Marco & Mike Harfoot & Justin Johnson & Susannah B. Lerman & Brian W. Miller & Toni Lyn Morelli & Akira S. Mori & Ensheng Weng &, 2024. "Biodiversity loss reduces global terrestrial carbon storage," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    14. Chevuru, Sneha & Lamsal, Gambhir & (Rens) van Beek, L.P.H. & van Vliet, Michelle T.H. & Marston, Landon & Bierkens, Marc F.P., 2025. "Comparing crop growth models across the contiguous USA with a focus on dry and warm spells," Agricultural Water Management, Elsevier, vol. 311(C).
    15. Peter Bossew & Giorgia Cinelli & Giancarlo Ciotoli & Quentin G. Crowley & Marc De Cort & Javier Elío Medina & Valeria Gruber & Eric Petermann & Tore Tollefsen, 2020. "Development of a Geogenic Radon Hazard Index—Concept, History, Experiences," IJERPH, MDPI, vol. 17(11), pages 1-23, June.
    16. Carlos Manuel Hernández & Aliou Faye & Mamadou Ousseynou Ly & Zachary P. Stewart & P. V. Vara Prasad & Leonardo Mendes Bastos & Luciana Nieto & Ana J. P. Carcedo & Ignacio Antonio Ciampitti, 2021. "Soil and Climate Characterization to Define Environments for Summer Crops in Senegal," Sustainability, MDPI, vol. 13(21), pages 1-17, October.
    17. Tania L. Maxwell & Mark D. Spalding & Daniel A. Friess & Nicholas J. Murray & Kerrylee Rogers & Andre S. Rovai & Lindsey S. Smart & Lukas Weilguny & Maria Fernanda Adame & Janine B. Adams & William E., 2024. "Soil carbon in the world’s tidal marshes," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    18. Ravic Nijbroek & Kristin Piikki & Mats Söderström & Bas Kempen & Katrine G. Turner & Simeon Hengari & John Mutua, 2018. "Soil Organic Carbon Baselines for Land Degradation Neutrality: Map Accuracy and Cost Tradeoffs with Respect to Complexity in Otjozondjupa, Namibia," Sustainability, MDPI, vol. 10(5), pages 1-20, May.
    19. Nancy L. Harris & David A. Gibbs & Alessandro Baccini & Richard A. Birdsey & Sytze Bruin & Mary Farina & Lola Fatoyinbo & Matthew C. Hansen & Martin Herold & Richard A. Houghton & Peter V. Potapov & D, 2021. "Global maps of twenty-first century forest carbon fluxes," Nature Climate Change, Nature, vol. 11(3), pages 234-240, March.
    20. Fritz, Steffen & See, Linda & Bayas, Juan Carlos Laso & Waldner, François & Jacques, Damien & Becker-Reshef, Inbal & Whitcraft, Alyssa & Baruth, Bettina & Bonifacio, Rogerio & Crutchfield, Jim & Rembo, 2019. "A comparison of global agricultural monitoring systems and current gaps," Agricultural Systems, Elsevier, vol. 168(C), pages 258-272.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:18:p:8110-:d:1745568. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.