Author
Listed:
- Mengmeng Liu
(No.3 Institute of Geology and Mineral Exploration, Gansu Bureau of Geology and Mineral Resources, Lanzhou 730050, China)
- Wendong Li
(No.3 Institute of Geology and Mineral Exploration, Gansu Bureau of Geology and Mineral Resources, Lanzhou 730050, China)
- Yu Ye
(College of Geography and Environmental Sciences, Northwest Normal University, Lanzhou 730070, China)
- Xia Li
(Gansu Geomatic Information Center, Lanzhou 730000, China)
- Wei Wei
(College of Geography and Environmental Sciences, Northwest Normal University, Lanzhou 730070, China)
- Cunlin Xin
(College of Geography and Environmental Sciences, Northwest Normal University, Lanzhou 730070, China)
Abstract
Xiahe County, in the northwestern Gannan Tibetan Autonomous Prefecture of Gansu Province, faces recurrent geological hazards—including landslides and debris flows. Geological hazards in highly vegetated regions pose severe threats to ecological balance, human settlements, and socio-economic sustainability, hindering the achievement of sustainable development goals (SDGs). Due to the significant topographic relief and high vegetation coverage in this region, traditional manual ground-based surveys face substantial challenges in the investigation and identification of geological hazards, necessitating the adoption of advanced monitoring and identification techniques. This study employs a comprehensive approach integrating optical remote sensing, interferometric synthetic aperture radar (InSAR), and unmanned aerial vehicle (UAV) photogrammetry to investigate and identify geological hazards in the eastern part of Xiahe County, exploring the application capabilities and effectiveness of multisource remote sensing techniques in hazard identification. The results indicate that this study has shortened the time required for on-site investigations by improving the efficiency of disaster identification while also providing comprehensive, multi-angle, and high-precision remote sensing outcomes. These achievements offer robust support for sustainable disaster management and land use planning in ecologically fragile regions. Optical remote sensing, InSAR, and UAV photogrammetry each possess unique advantages and application scopes, but single-technique approaches are insufficient to fully address potential hazard identification. Developing a comprehensive investigation and identification framework that integrates and complements the strengths of multisource technologies has proven to be an effective pathway for the rapid investigation, identification, and evaluation of geological hazards. These results contribute to regional sustainability by enabling targeted risk mitigation, minimizing disaster-induced ecological and economic losses, and enhancing the resilience of vulnerable communities.
Suggested Citation
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:17:p:8070-:d:1744542. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.