Author
Listed:
- Okan Uykan
(Faculty of Engineering, Department of Environmental Engineering, Bursa Uludag University, 16059 Nilufer, Bursa, Turkey)
- Güray Çelik
(Faculty of Engineering, Department of Environmental Engineering, Bursa Uludag University, 16059 Nilufer, Bursa, Turkey)
- Aşkın Birgül
(Faculty of Engineering and Natural Sciences, Department of Environmental Engineering, Bursa Technical University, 16310 Yıldırım, Bursa, Turkey)
Abstract
This study presents a novel framework to assess the combined impact of soiling and thermal effects on rooftop PV systems through multi-seasonal, multi-site field campaigns in an industrial-urban environment. This work addresses key research gaps by providing a high-resolution, site-specific analysis that captures the synergistic effect of particulate accumulation and thermal stress on PV performance in an industrial-urban environment—a setting distinct from the well-studied arid climates. The study further bridges a gap by employing controlled pre- and post-cleaning performance tests across multiple sites to isolate and quantify soiling losses, offering insights crucial for developing targeted maintenance strategies in pollution-prone urban areas. Unlike previous work, it integrates gravimetric soiling measurements with high-resolution electrical (I–V), thermal, and environmental monitoring, complemented by PVSYST simulation benchmarking. Field data were collected from five rooftop plants in Bursa, Türkiye, during summer and winter, capturing seasonal variations in particulate deposition, module temperature, and PV output, alongside irradiance, wind speed, and airborne particulates. Soiling nearly doubled in winter (0.098 g/m 2 ) compared to summer (0.051 g/m 2 ), but lower winter temperatures (mean 19.8 °C) partially offset performance losses seen under hot summer conditions (mean 42.1 °C). Isc correlated negatively with both soiling (r = −0.68) and temperature (r = −0.72), with regression analysis showing soiling as the dominant factor (R 2 = 0.71). Energy yield analysis revealed that high summer irradiance did not always increase output due to thermal losses, while winter often yielded comparable or higher energy. Soiling-induced losses ranged 5–17%, with SPP-2 worst affected in winter, and seasonal PR declines averaged 10.8%. The results highlight the need for integrated strategies combining cleaning, thermal management, and environmental monitoring to maintain PV efficiency in particulate-prone regions, offering practical guidance for operators and supporting renewable energy goals in challenging environments.
Suggested Citation
Okan Uykan & Güray Çelik & Aşkın Birgül, 2025.
"Quantifying the Impact of Soiling and Thermal Stress on Rooftop PV Performance: Seasonal Analysis from an Industrial Urban Region in Türkiye,"
Sustainability, MDPI, vol. 17(17), pages 1-25, September.
Handle:
RePEc:gam:jsusta:v:17:y:2025:i:17:p:8038-:d:1743688
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:17:p:8038-:d:1743688. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.