IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i17p8014-d1743252.html
   My bibliography  Save this article

Model Development for the Real-World Emission Factor Measurement of On-Road Vehicles Under Heterogeneous Traffic Conditions: An Empirical Analysis in Shanghai

Author

Listed:
  • Yu Liu

    (State Key Laboratory of Water Pollution Control and Green Resource Recycling, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China)

  • Wenwen Jiang

    (The Key Laboratory of Road and Traffic Engineering, Ministry of Education, College of Transportation, Tongji University, Shanghai 201804, China)

  • Xiaoqiang Zhang

    (State Key Laboratory of Water Pollution Control and Green Resource Recycling, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China)

  • Tsehaye Adamu Andualem

    (State Key Laboratory of Water Pollution Control and Green Resource Recycling, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China)

  • Ping Wang

    (The Key Laboratory of Road and Traffic Engineering, Ministry of Education, College of Transportation, Tongji University, Shanghai 201804, China)

  • Ying Liu

    (State Key Laboratory of Water Pollution Control and Green Resource Recycling, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China)

Abstract

Global warming is attributed to anthropogenic emissions of CO 2 and the contribution from the transport sector is significant. Estimating on-road vehicle CO 2 emission factors is essential for guiding carbon-reduction efforts in transportation. In order to accurately calculate carbon emission factors from vehicles, this study built a multi-scenario model for open, semi-enclosed, and enclosed road environments based on Fick’s second law and the law of conservation of mass. During the model optimization phase, it was found that the model’s applicability domain effectively encompassed most urban roadway scenarios, making it suitable for estimating urban traffic CO 2 emissions. The spatiotemporal heterogeneity analysis of field measurements indicated that this method can effectively distinguish variations in CO 2 emission factors across different road types and time periods. The method proposed in this study offers an effective solution for the real-time monitoring of large-scale on-road vehicle carbon emissions.

Suggested Citation

  • Yu Liu & Wenwen Jiang & Xiaoqiang Zhang & Tsehaye Adamu Andualem & Ping Wang & Ying Liu, 2025. "Model Development for the Real-World Emission Factor Measurement of On-Road Vehicles Under Heterogeneous Traffic Conditions: An Empirical Analysis in Shanghai," Sustainability, MDPI, vol. 17(17), pages 1-20, September.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:17:p:8014-:d:1743252
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/17/8014/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/17/8014/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xiaojian Hu & Nuo Chen & Nan Wu & Bicheng Yin, 2021. "The Potential Impacts of Electric Vehicles on Urban Air Quality in Shanghai City," Sustainability, MDPI, vol. 13(2), pages 1-12, January.
    2. Tsiakmakis, Stefanos & Fontaras, Georgios & Ciuffo, Biagio & Samaras, Zissis, 2017. "A simulation-based methodology for quantifying European passenger car fleet CO2 emissions," Applied Energy, Elsevier, vol. 199(C), pages 447-465.
    3. Ying Chen & Zhigang Du & Fangtong Jiao & Shuyang Zhang, 2022. "Optimal Speed Model of Urban Underwater Tunnel Based on CO 2 Emissions Factor," Sustainability, MDPI, vol. 14(15), pages 1-16, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xinglong Liu & Fuquan Zhao & Han Hao & Kangda Chen & Zongwei Liu & Hassan Babiker & Amer Ahmad Amer, 2020. "From NEDC to WLTP: Effect on the Energy Consumption, NEV Credits, and Subsidies Policies of PHEV in the Chinese Market," Sustainability, MDPI, vol. 12(14), pages 1-19, July.
    2. Cristian Giovanni Colombo & Carola Leone & Seyed Mahdi Miraftabzadeh & Nicoletta Matera & Michela Longo, 2025. "Location of Charging Stations Considering Services and Power Losses: Case Study," Energies, MDPI, vol. 18(18), pages 1-25, September.
    3. Salvo, Orlando de & Vaz de Almeida, Flávio G., 2019. "Influence of technologies on energy efficiency results of official Brazilian tests of vehicle energy consumption," Applied Energy, Elsevier, vol. 241(C), pages 98-112.
    4. Seyedehmehrmanzar Sohrab & Nándor Csikós & Péter Szilassi, 2022. "Connection between the Spatial Characteristics of the Road and Railway Networks and the Air Pollution (PM10) in Urban–Rural Fringe Zones," Sustainability, MDPI, vol. 14(16), pages 1-20, August.
    5. Mogno, Caterina & Fontaras, Georgios & Arcidiacono, Vincenzo & Komnos, Dimitrios & Pavlovic, Jelica & Ciuffo, Biagio & Makridis, Michail & Valverde, Victor, 2022. "The application of the CO2MPAS model for vehicle CO2 emissions estimation over real traffic conditions," Transport Policy, Elsevier, vol. 124(C), pages 152-159.
    6. Gang Zhao & Xiaolin Wang & Michael Negnevitsky & Hengyun Zhang & Chengjiang Li, 2022. "Performance Improvement of a Novel Trapezoid Air-Cooling Battery Thermal Management System for Electric Vehicles," Sustainability, MDPI, vol. 14(9), pages 1-21, April.
    7. Christian Engström & Per Öberg & Georgios Fontaras & Barouch Giechaskiel, 2022. "Considerations for Achieving Equivalence between Hub- and Roller-Type Dynamometers for Vehicle Exhaust Emissions," Energies, MDPI, vol. 15(20), pages 1-23, October.
    8. Shih, Hsiu-Ching & Chiang, Chia-Yun & Lai, Hsin-Chih & Hsiao, Min-Chuan & Chen, Li-Heng & Ma, Hwong-wen, 2023. "Assessing the nexus of electric vehicle and energy policies on health risks," Energy, Elsevier, vol. 282(C).
    9. He, Liqiang & Hu, Jingnan & Zhang, Shaojun & Wu, Ye & Zhu, Rencheng & Zu, Lei & Bao, Xiaofeng & Lai, Yitu & Su, Sheng, 2018. "The impact from the direct injection and multi-port fuel injection technologies for gasoline vehicles on solid particle number and black carbon emissions," Applied Energy, Elsevier, vol. 226(C), pages 819-826.
    10. Carrera-Rodríguez, Marcelino & Villegas-Alcaraz, José Francisco & Salazar-Hernández, Carmen & Mendoza-Miranda, Juan Manuel & Jiménez-Islas, Hugo & Segovia Hernández, Juan Gabriel & de Dios Ortíz-Alvar, 2022. "Monitoring of oil lubrication limits, fuel consumption, and excess CO2 production on civilian vehicles in Mexico," Energy, Elsevier, vol. 257(C).
    11. Michele De Santis & Sandro Agnelli & Fabrizio Patanè & Oliviero Giannini & Gino Bella, 2018. "Experimental Study for the Assessment of the Measurement Uncertainty Associated with Electric Powertrain Efficiency Using the Back-to-Back Direct Method," Energies, MDPI, vol. 11(12), pages 1-19, December.
    12. Kumar, Sandeep & Muhuri, Pranab K., 2019. "A novel GDP prediction technique based on transfer learning using CO2 emission dataset," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    13. Pavlovic, J. & Ciuffo, B. & Fontaras, G. & Valverde, V. & Marotta, A., 2018. "How much difference in type-approval CO2 emissions from passenger cars in Europe can be expected from changing to the new test procedure (NEDC vs. WLTP)?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 111(C), pages 136-147.
    14. Kangda Chen & Fuquan Zhao & Xinglong Liu & Han Hao & Zongwei Liu, 2021. "Impacts of the New Worldwide Light-Duty Test Procedure on Technology Effectiveness and China’s Passenger Vehicle Fuel Consumption Regulations," IJERPH, MDPI, vol. 18(6), pages 1-20, March.
    15. Song, Jingeun & Cha, Junepyo, 2022. "Development of prediction methodology for CO2 emissions and fuel economy of light duty vehicle," Energy, Elsevier, vol. 244(PB).
    16. Hooftman, Nils & Messagie, Maarten & Van Mierlo, Joeri & Coosemans, Thierry, 2018. "A review of the European passenger car regulations – Real driving emissions vs local air quality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 86(C), pages 1-21.
    17. Antti Lajunen & Klaus Kivekäs & Jari Vepsäläinen & Kari Tammi, 2020. "Influence of Increasing Electrification of Passenger Vehicle Fleet on Carbon Dioxide Emissions in Finland," Sustainability, MDPI, vol. 12(12), pages 1-13, June.
    18. Fontaras, Georgios & Valverde, Víctor & Arcidiacono, Vincenzo & Tsiakmakis, Stefanos & Anagnostopoulos, Konstantinos & Komnos, Dimitrios & Pavlovic, Jelica & Ciuffo, Biagio, 2018. "The development and validation of a vehicle simulator for the introduction of Worldwide Harmonized test protocol in the European light duty vehicle CO2 certification process," Applied Energy, Elsevier, vol. 226(C), pages 784-796.
    19. Tsiakmakis, Stefanos & Fontaras, Georgios & Dornoff, Jan & Valverde, Victor & Komnos, Dimitrios & Ciuffo, Biagio & Mock, Peter & Samaras, Zissis, 2019. "From lab-to-road & vice-versa: Using a simulation-based approach for predicting real-world CO2 emissions," Energy, Elsevier, vol. 169(C), pages 1153-1165.
    20. Gil-Sayas, Susana & Komnos, Dimitrios & Lodi, Chiara & Currò, Davide & Serra, Simone & Broatch, Alberto & Fontaras, Georgios, 2022. "Analysing the potential of a simulation-based method for the assessment of CO2 savings from eco-innovative technologies in light-duty vehicles," Energy, Elsevier, vol. 245(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:17:p:8014-:d:1743252. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.