IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i17p7871-d1739528.html
   My bibliography  Save this article

Risks and Challenges in CO 2 Capture, Use, Transportation, and Storage

Author

Listed:
  • D. Nathan Meehan

    (College of Engineering, Texas A&M University, College Station, TX 77840, USA)

Abstract

Reaching net-zero greenhouse gas emissions will require broad deployment of carbon capture and storage (CCS), yet significant challenges remain. This paper reviews the main barriers that may hinder or delay widespread CCS adoption, drawing on current projects in various stages of planning, construction, and development. The discussion focuses on technical, economic, social, and regulatory aspects of CCS and identifies several key obstacles. These include the high financial burden on energy production, persistent uncertainties about the long-term behavior of stored CO 2 , and the complexity of the regulatory framework governing CCS projects and CO 2 pipelines. Carbon capture, use, and storage (CCUS) remains a major focus of attention in the petroleum industry due to its potential to remove carbon dioxide from the atmosphere or prevent future emissions. Despite this potential, challenges and risks continue to limit progress.

Suggested Citation

  • D. Nathan Meehan, 2025. "Risks and Challenges in CO 2 Capture, Use, Transportation, and Storage," Sustainability, MDPI, vol. 17(17), pages 1-21, September.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:17:p:7871-:d:1739528
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/17/7871/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/17/7871/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Paul E. Hardisty & Mayuran Sivapalan & Peter Brooks, 2011. "The Environmental and Economic Sustainability of Carbon Capture and Storage," IJERPH, MDPI, vol. 8(5), pages 1-18, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Jianqiao & Liu, Jia & Zhu, Yiheng & Sun, Wenyue & Zhang, Daowei & Pan, Huanquan, 2025. "Multi-objective optimization for efficient CO2 storage under pressure buildup constraint in saline aquifer," Applied Energy, Elsevier, vol. 382(C).
    2. McLaughlin, Hope & Littlefield, Anna A. & Menefee, Maia & Kinzer, Austin & Hull, Tobias & Sovacool, Benjamin K. & Bazilian, Morgan D. & Kim, Jinsoo & Griffiths, Steven, 2023. "Carbon capture utilization and storage in review: Sociotechnical implications for a carbon reliant world," Renewable and Sustainable Energy Reviews, Elsevier, vol. 177(C).
    3. Alina Ilinova & Natalia Romasheva & Alexey Cherepovitsyn, 2021. "CC(U)S Initiatives: Public Effects and “Combined Value” Performance," Resources, MDPI, vol. 10(6), pages 1-20, June.
    4. Yiwei Wu & Hongyu Zhang & Shuaian Wang & Lu Zhen, 2023. "Mathematical Optimization of Carbon Storage and Transport Problem for Carbon Capture, Use, and Storage Chain," Mathematics, MDPI, vol. 11(12), pages 1-14, June.
    5. Enemuo, Michael & Ogunmodimu, Olumide, 2025. "Transitioning the mining sector: A review of renewable energy integration and carbon footprint reduction strategies," Applied Energy, Elsevier, vol. 384(C).
    6. Aurelia Rybak & Jarosław Joostberens, 2025. "Scenarios of Carbon Capture and Storage Importance in the Process of Energy System Transformation in Poland," Energies, MDPI, vol. 18(9), pages 1-21, April.
    7. Alexey Cherepovitsyn & Tatiana Chvileva & Sergey Fedoseev, 2020. "Popularization of Carbon Capture and Storage Technology in Society: Principles and Methods," IJERPH, MDPI, vol. 17(22), pages 1-24, November.
    8. Xiaoji Shang & Jianguo Wang & Huimin Wang & Xiaolin Wang, 2022. "Combined Effects of CO 2 Adsorption-Induced Swelling and Dehydration-Induced Shrinkage on Caprock Sealing Efficiency," IJERPH, MDPI, vol. 19(21), pages 1-22, November.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:17:p:7871-:d:1739528. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.