IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i17p7863-d1739189.html
   My bibliography  Save this article

Smart Residual Biomass Supply Chain: A Digital Tool to Boost Energy Potential Recovery and Mitigate Rural Fire Risk

Author

Listed:
  • Tiago Bastos

    (DEGEIT, Departamento de Economia, Gestão, Engenharia Industrial e Turismo, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
    Laboratório Associado de Sistemas Inteligentes (LASI), Instituto de Engenharia Eletrónica e Informática de Aveiro (IEETA), Universidade de Aveiro, 3810-193 Aveiro, Portugal)

  • Leonel J. R. Nunes

    (DEGEIT, Departamento de Economia, Gestão, Engenharia Industrial e Turismo, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
    GOVCOPP, Unidade de Investigação em Governança, Competitividade e Políticas Públicas, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
    PROMETHEUS, Unidade de Investigação em Materiais, Energia, Ambiente para a Sustentabilidade, Instituto Politécnico de Viana do Castelo, Rua da Escola Industrial e Comercial de Nun’Alvares, 4900-347 Viana do Castelo, Portugal)

  • Leonor Teixeira

    (DEGEIT, Departamento de Economia, Gestão, Engenharia Industrial e Turismo, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
    Laboratório Associado de Sistemas Inteligentes (LASI), Instituto de Engenharia Eletrónica e Informática de Aveiro (IEETA), Universidade de Aveiro, 3810-193 Aveiro, Portugal)

Abstract

Agroforestry landscape has undergone changes, namely land abandonment, which when combined with negative attitudes towards fire, is associated with the eradication of agroforestry leftovers and acts towards the proliferation of fires, threatening sustainability concerns. Agroforestry leftovers recovery presents high potential to act on this problem; however, the logistical costs associated with the recovery chain make it unfeasible. The lack of coordination/transparency between stakeholders is one of the main explanations for these costs. This study develops a digital tool to enhance the residual biomass supply chain for energy recovery and fire risk mitigation. In addition to this concept, this work also proposes conceptual models and a prototype, two essential contributions to software development. Methodologically, this study consulted 10 experts to validate a concept previously presented in the literature, supplemented with UML modeling and prototyping with Figma ® . The main results point to the creation of a disruptive concept that will allow access to information/transparency about agroforestry services, with the goal that this will improve the functioning of the RBSC, resulting in a reduction in fire risk and, consequently, improvements in sustainability concerns associated with this hazard.

Suggested Citation

  • Tiago Bastos & Leonel J. R. Nunes & Leonor Teixeira, 2025. "Smart Residual Biomass Supply Chain: A Digital Tool to Boost Energy Potential Recovery and Mitigate Rural Fire Risk," Sustainability, MDPI, vol. 17(17), pages 1-21, September.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:17:p:7863-:d:1739189
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/17/7863/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/17/7863/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Marta Oliveira & Cristina Delerue-Matos & Maria Carmo Pereira & Simone Morais, 2020. "Environmental Particulate Matter Levels during 2017 Large Forest Fires and Megafires in the Center Region of Portugal: A Public Health Concern?," IJERPH, MDPI, vol. 17(3), pages 1-20, February.
    2. Hugo Guzmán-Bello & Iosvani López-Díaz & Miguel Aybar-Mejía & Jose Atilio de Frias, 2022. "A Review of Trends in the Energy Use of Biomass: The Case of the Dominican Republic," Sustainability, MDPI, vol. 14(7), pages 1-27, March.
    3. Bernardine Chidozie & Ana Ramos & José Vasconcelos & Luis Pinto Ferreira, 2024. "Development of a Residual Biomass Supply Chain Simulation Model Using AnyLogistix: A Methodical Approach," Logistics, MDPI, vol. 8(4), pages 1-18, October.
    4. Bernardine Chidozie & Ana Ramos & José Vasconcelos & Luis Pinto Ferreira & Reinaldo Gomes, 2024. "Highlighting Sustainability Criteria in Residual Biomass Supply Chains: A Dynamic Simulation Approach," Sustainability, MDPI, vol. 16(22), pages 1-24, November.
    5. Moretti, Luca & Milani, Mario & Lozza, Giovanni Gustavo & Manzolini, Giampaolo, 2021. "A detailed MILP formulation for the optimal design of advanced biofuel supply chains," Renewable Energy, Elsevier, vol. 171(C), pages 159-175.
    6. Basile, Flavia & Pilotti, Lorenzo & Ugolini, Marco & Lozza, Giovanni & Manzolini, Giampaolo, 2022. "Supply chain optimization and GHG emissions in biofuel production from forestry residues in Sweden," Renewable Energy, Elsevier, vol. 196(C), pages 405-421.
    7. Tiago Bastos & Leonor C. Teixeira & João C. O. Matias & Leonel J. R. Nunes, 2023. "Agroforestry Biomass Recovery Supply Chain Management: A More Efficient Information Flow Model Based on a Web Platform," Logistics, MDPI, vol. 7(3), pages 1-15, August.
    8. Leonel J. R. Nunes & Sandra Silva, 2023. "Optimization of the Residual Biomass Supply Chain: Process Characterization and Cost Analysis," Logistics, MDPI, vol. 7(3), pages 1-21, August.
    9. Bernardine Chigozie Chidozie & Ana Luísa Ramos & José Vasconcelos Ferreira & Luís Pinto Ferreira, 2023. "Residual Agroforestry Biomass Supply Chain Simulation Insights and Directions: A Systematic Literature Review," Sustainability, MDPI, vol. 15(13), pages 1-16, June.
    10. Fernando Almeida & Jorge Simões & Sérgio Lopes, 2022. "Exploring the Benefits of Combining DevOps and Agile," Future Internet, MDPI, vol. 14(2), pages 1-14, February.
    11. Salem Ahmed Alabdali & Salvatore Flavio Pileggi & Dilek Cetindamar, 2023. "Influential Factors, Enablers, and Barriers to Adopting Smart Technology in Rural Regions: A Literature Review," Sustainability, MDPI, vol. 15(10), pages 1-38, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tiago Bastos & João Matias & Leonel Nunes & Leonor Teixeira, 2025. "Technology for Boosting Sustainability: A Web App-Based Information Model for Boosting Residual Biomass Recovery," Land, MDPI, vol. 14(7), pages 1-20, June.
    2. Tiago Bastos & Leonor Teixeira & Leonel J. R. Nunes, 2025. "App-Based Logistics for Residual Biomass Recovery: Economic Feasibility in Fire Risk Mitigation," Logistics, MDPI, vol. 9(3), pages 1-17, September.
    3. Bernardine Chigozie Chidozie & Ana Luísa Ramos & José Vasconcelos Ferreira & Luís Pinto Ferreira, 2023. "Residual Agroforestry Biomass Supply Chain Simulation Insights and Directions: A Systematic Literature Review," Sustainability, MDPI, vol. 15(13), pages 1-16, June.
    4. Leonel J. R. Nunes & Sandra Silva, 2023. "Optimization of the Residual Biomass Supply Chain: Process Characterization and Cost Analysis," Logistics, MDPI, vol. 7(3), pages 1-21, August.
    5. Bernardine Chidozie & Ana Ramos & José Vasconcelos & Luis Pinto Ferreira, 2024. "Development of a Residual Biomass Supply Chain Simulation Model Using AnyLogistix: A Methodical Approach," Logistics, MDPI, vol. 8(4), pages 1-18, October.
    6. Bernardine Chidozie & Ana Ramos & José Vasconcelos & Luis Pinto Ferreira & Reinaldo Gomes, 2024. "Highlighting Sustainability Criteria in Residual Biomass Supply Chains: A Dynamic Simulation Approach," Sustainability, MDPI, vol. 16(22), pages 1-24, November.
    7. Pedro Neves Mata & José Moleiro Martins & João Carlos Ferreira, 2025. "New Software Product Development: Bibliometric Analysis," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 16(1), pages 4161-4184, March.
    8. Nimmanterdwong, Prathana & Chalermsinsuwan, Benjapon & Piumsomboon, Pornpote, 2023. "Optimizing utilization pathways for biomass to chemicals and energy by integrating emergy analysis and particle swarm optimization (PSO)," Renewable Energy, Elsevier, vol. 202(C), pages 1448-1459.
    9. Ali, Yousaf & Tariq, Minahill & Amjad, Mohammad Hamza, 2025. "Modelling and classification of barriers in the construction of smart villages in developing countries," Evaluation and Program Planning, Elsevier, vol. 111(C).
    10. Monica Laura Zlati & Angelica Buboi (Danaila) & Costinela Fortea & Alina Meca & Valentin Marian Antohi, 2024. "Studying Regional Disparities at European Level with a View to Achieving Climate Neutrality Objectives," Economics and Applied Informatics, "Dunarea de Jos" University of Galati, Faculty of Economics and Business Administration, issue 3, pages 361-373.
    11. Wang, Guotao & Liao, Qi & Wang, Chang & Liang, Yongtu & Zhang, Haoran, 2022. "Multiperiod optimal planning of biofuel refueling stations: A bi-level game-theoretic approach," Renewable Energy, Elsevier, vol. 200(C), pages 1152-1165.
    12. Youngjin Kim & Sojung Kim, 2025. "Optimization and Simulation in Biofuel Supply Chain," Energies, MDPI, vol. 18(5), pages 1-24, February.
    13. Yunusoglu, Pinar & Ozsoydan, Fehmi Burcin & Bilgen, Bilge, 2024. "A machine learning-based two-stage approach for the location of undesirable facilities in the biomass-to-bioenergy supply chain," Applied Energy, Elsevier, vol. 362(C).
    14. Li, Zhengbing & Liang, Yongtu & Ni, Weilong & Liao, Qi & Xu, Ning & Li, Lichao & Zheng, Jianqin & Zhang, Haoran, 2022. "Pipesharing: economic-environmental benefits from transporting biofuels through multiproduct pipelines," Applied Energy, Elsevier, vol. 311(C).
    15. Davide Tosi, 2022. "Editorial for the Special Issue on “Software Engineering and Data Science”," Future Internet, MDPI, vol. 14(11), pages 1-2, October.
    16. Emily Heaney & Laura Hunter & Angus Clulow & Devin Bowles & Sotiris Vardoulakis, 2021. "Efficacy of Communication Techniques and Health Outcomes of Bushfire Smoke Exposure: A Scoping Review," IJERPH, MDPI, vol. 18(20), pages 1-14, October.
    17. Dwi Iryaning Handayani & Ilyas Masudin & Ahmad Rusdiansyah & Judi Suharsono, 2021. "Production-Distribution Model Considering Traceability and Carbon Emission: A Case Study of the Indonesian Canned Fish Food Industry," Logistics, MDPI, vol. 5(3), pages 1-21, September.
    18. Hugo Guzmán-Bello & Iosvani López-Díaz & Miguel Aybar-Mejía & Jose Atilio de Frias, 2022. "A Review of Trends in the Energy Use of Biomass: The Case of the Dominican Republic," Sustainability, MDPI, vol. 14(7), pages 1-27, March.
    19. Montero, José-María & Naimy, Viviane & Farraj, Nermeen Abi & El Khoury, Rim, 2024. "Natural disasters, stock price volatility in the property-liability insurance market and sustainability: An unexplored link," Socio-Economic Planning Sciences, Elsevier, vol. 91(C).
    20. Mangirdas Morkūnas & Yufei Wang & Jinzhao Wei, 2024. "Role of AI and IoT in Advancing Renewable Energy Use in Agriculture," Energies, MDPI, vol. 17(23), pages 1-20, November.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:17:p:7863-:d:1739189. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.