Author
Listed:
- Xiaofeng Li
(College of Chemical Engineering and Technology, Xinjiang University, Urumqi 830017, China
Northwest Branch of China Petroleum Engineering & Construction Co., Ltd., Turpan 838202, China)
- Fangying Zhang
(Northwest Branch of China Petroleum Engineering & Construction Co., Ltd., Turpan 838202, China)
- Yudai Huang
(College of Chemistry, Xinjiang University, Urumqi 830017, China)
- Gaohang Zhang
(College of Electrical Engineering, Xinjiang University, Urumqi 830017, China)
Abstract
Under the background of “double carbon” and sustainable development, aimed at the problem of resource capacity planning in the integrated energy system (IES), at improving the economy of system planning operation and renewable energy (RE) consumption, and at reducing carbon emissions, this paper proposes a multi-objective bi-level sustainability planning method for IES considering the bilateral response of supply and demand and hydrogen utilization. Firstly, the multi-energy flow in the IES is analyzed, constructing the system energy flow framework, studying the support ability of hydrogen utilization and the bilateral response of supply and demand to system energy conservation, emission reduction and sustainable development. Secondly, a multi-objective bi-level planning model for IES is constructed with the purpose of optimizing economy, RE consumption, and carbon emission. The non-dominated sorting genetic algorithm II (NSGA-II) and commercial solver Gurobi are used to solve the model and, through the simulation, verify the model’s effectiveness. Finally, the planning results show that after introducing the hydrogen fuel cells, hydrogen storage tank, and bilateral response, the total costs and carbon emissions decreased by 29.17% and 77.12%, while the RE consumption rate increased by 16.75%. After introducing the multi-objective planning method considering the system economy, RE consumption, and carbon emissions, the system total cost increased by 0.34%, the consumption rate of RE increased by 0.6%, and the carbon emissions decreased by 43.61t, which effectively provides reference for resource planning and sustainable development of IES.
Suggested Citation
Xiaofeng Li & Fangying Zhang & Yudai Huang & Gaohang Zhang, 2025.
"Bi-Level Sustainability Planning for Integrated Energy Systems Considering Hydrogen Utilization and the Bilateral Response of Supply and Demand,"
Sustainability, MDPI, vol. 17(17), pages 1-22, August.
Handle:
RePEc:gam:jsusta:v:17:y:2025:i:17:p:7637-:d:1731583
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:17:p:7637-:d:1731583. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.