IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i16p7365-d1724639.html
   My bibliography  Save this article

Modest Irrigation Frequency Improves Maize Water Use Efficiency and Influences Trait Expression

Author

Listed:
  • Carla Sofia Santos Ferreira

    (Polytechnic Institute of Coimbra, Applied Research Institute, Rua da Misericórdia, Lagar dos Cortiços—S. Martinho do Bispo, 3045-093 Coimbra, Portugal
    Research Centre for Natural Resources Environment and Society (CERNAS), Polytechnic Institute of Coimbra, Bencanta, 3045-601 Coimbra, Portugal)

  • Arona Figueroa Pires

    (Research Centre for Natural Resources Environment and Society (CERNAS), Polytechnic Institute of Coimbra, Bencanta, 3045-601 Coimbra, Portugal)

  • André Pereira

    (Research Centre for Natural Resources Environment and Society (CERNAS), Polytechnic Institute of Coimbra, Bencanta, 3045-601 Coimbra, Portugal)

  • Pedro Mendes-Moreira

    (Research Centre for Natural Resources Environment and Society (CERNAS), Polytechnic Institute of Coimbra, Bencanta, 3045-601 Coimbra, Portugal)

  • Matthew Tom Harrison

    (Tasmanian Institute of Agriculture, University of Tasmania, Newnham Drive, Launceston, TAS 7248, Australia)

Abstract

While irrigation is generally required for most summer crops in the Mediterranean region, increasingly scarce water supplies are leading to a demand for more efficient irrigation infrastructure. Here, we assess how three irrigation volumes—100 mm/week (simulating excess water), 55 mm twice per week (moderate supply), and a variable amount adjusted on a weekly basis according to crop water demand (AMP) applied once or twice weekly via drip irrigation—impacted the growth, yield, and ear traits of a local maize variety under low-input farming in central Portugal. We found that irrigation management significantly influenced grain yield and irrigation water use efficiency (IWUE), with the 55 mm treatment applied twice weekly achieving the highest yield (3504 kg ha −1 ) and IWUE (7.2 kg ha −1 mm −1 ). The highest irrigation treatment (100 mm/weekly) impaired yield (996 kg ha −1 and 1973 kg ha −1 , when water was applied in one or two events), likely due to nutrient leaching, and resulted in the lowest IWRU (1.2 kg ha −1 mm −1 and 2.5 kg ha −1 mm −1 , respectively). Biweekly applications tended to increase crop height. Irrigation rate and frequency significantly affected kernel number and size, but not total ear weight or cob-to-ear weight ratio. These findings highlight the importance of irrigation frequency based on crop water demand over blanket approaches based on volume alone.

Suggested Citation

  • Carla Sofia Santos Ferreira & Arona Figueroa Pires & André Pereira & Pedro Mendes-Moreira & Matthew Tom Harrison, 2025. "Modest Irrigation Frequency Improves Maize Water Use Efficiency and Influences Trait Expression," Sustainability, MDPI, vol. 17(16), pages 1-19, August.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:16:p:7365-:d:1724639
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/16/7365/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/16/7365/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bwambale, Erion & Abagale, Felix K. & Anornu, Geophrey K., 2022. "Smart irrigation monitoring and control strategies for improving water use efficiency in precision agriculture: A review," Agricultural Water Management, Elsevier, vol. 260(C).
    2. Payero, J.O. & Tarkalson, D.D. & Irmak, S. & Davison, D. & Petersen, J.L., 2009. "Effect of timing of a deficit-irrigation allocation on corn evapotranspiration, yield, water use efficiency and dry mass," Agricultural Water Management, Elsevier, vol. 96(10), pages 1387-1397, October.
    3. Chen, Xinyue & Zhang, Kai & Gao, Xiaopeng & Ai, Xin & Chen, Guoyue & Guo, Xiaomeng & Wu, Chengcheng & Zhang, Lu, 2025. "Effect of irrigation with magnetized and ionized water on yield, nutrient uptake and water-use efficiency of winter wheat in Xinjiang, China," Agricultural Water Management, Elsevier, vol. 308(C).
    4. Su, Zheng’e & Zhao, Jin & Marek, Thomas H. & Liu, Ke & Harrison, Matthew Tom & Xue, Qingwu, 2022. "Drought tolerant maize hybrids have higher yields and lower water use under drought conditions at a regional scale," Agricultural Water Management, Elsevier, vol. 274(C).
    5. Gao, Jia & Liu, Ninggang & Wang, Xianqi & Niu, Zuoyuan & Liao, Qi & Ding, Risheng & Du, Taisheng & Kang, Shaozhong & Tong, Ling, 2024. "Maintaining grain number by reducing grain abortion is the key to improve water use efficiency of maize under deficit irrigation and salt stress," Agricultural Water Management, Elsevier, vol. 294(C).
    6. Hassanli, Ali Morad & Ebrahimizadeh, Mohammad Ali & Beecham, Simon, 2009. "The effects of irrigation methods with effluent and irrigation scheduling on water use efficiency and corn yields in an arid region," Agricultural Water Management, Elsevier, vol. 96(1), pages 93-99, January.
    7. Zou, Yufeng & Saddique, Qaisar & Ali, Ajaz & Xu, Jiatun & Khan, Muhammad Imran & Qing, Mu & Azmat, Muhammad & Cai, Huanjie & Siddique, Kadambot H.M., 2021. "Deficit irrigation improves maize yield and water use efficiency in a semi-arid environment," Agricultural Water Management, Elsevier, vol. 243(C).
    8. Ko, Jonghan & Piccinni, Giovanni, 2009. "Corn yield responses under crop evapotranspiration-based irrigation management," Agricultural Water Management, Elsevier, vol. 96(5), pages 799-808, May.
    9. Wang, Li & Liu, Xiaoli & Liu, Xuejing & Bao, Xiaoyuan & Zhang, Xuecheng & Yin, Baozhong & Wang, Wentao & Wang, Yandong & Zhen, Wenchao, 2024. "Effects of spring limited irrigation on grain yield and root characteristics of winter wheat in groundwater-overexploitation areas in the North China Plain," Agricultural Water Management, Elsevier, vol. 294(C).
    10. Couto, A. & Ruiz Padín, A. & Reinoso, B., 2013. "Comparative yield and water use efficiency of two maize hybrids differing in maturity under solid set sprinkler and two different lateral spacing drip irrigation systems in León, Spain," Agricultural Water Management, Elsevier, vol. 124(C), pages 77-84.
    11. Oliveira, Luciano Alves de & Miranda, Jarbas Honorio de & Cooke, Richard A.C., 2018. "Water management for sugarcane and corn under future climate scenarios in Brazil," Agricultural Water Management, Elsevier, vol. 201(C), pages 199-206.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohammed, Ali T. & Irmak, Suat, 2022. "Maize response to irrigation and nitrogen under center pivot, subsurface drip and furrow irrigation: Water productivity, basal evapotranspiration and yield response factors," Agricultural Water Management, Elsevier, vol. 271(C).
    2. Motazedian, Azam & Kazemeini, Seyed Abdolreza & Bahrani, Mohammad Jafar, 2019. "Sweet corn growth and GrainYield as influenced by irrigation and wheat residue management," Agricultural Water Management, Elsevier, vol. 224(C), pages 1-1.
    3. Srinivasan, M.S. & Measures, Richard & Muller, Carla & Neal, Mark & Rajanayaka, Channa & Shankar, Ude & Elley, Graham, 2021. "Comparing the water use metrics of just-in-case, just-in-time and justified irrigation strategies using a scenario-based tool," Agricultural Water Management, Elsevier, vol. 258(C).
    4. Gao, Jia & Li, Lin & Ding, Risheng & Kang, Shaozhong & Du, Taisheng & Tong, Ling & Kang, Jian & Xu, Wanli & Tang, Guangmu, 2025. "Grain yield and water productivity of maize under deficit irrigation and salt stress: Evidences from field experiment and literatures," Agricultural Water Management, Elsevier, vol. 307(C).
    5. Ertek, A. & Kara, B., 2013. "Yield and quality of sweet corn under deficit irrigation," Agricultural Water Management, Elsevier, vol. 129(C), pages 138-144.
    6. Igwe, Kelechi & Onyekwelu, Ikenna & Sharda, Vaishali, 2025. "Adaptation strategies for deficit irrigation management under extreme climate conditions," Agricultural Water Management, Elsevier, vol. 313(C).
    7. DeJonge, K.C. & Ascough, J.C. & Andales, A.A. & Hansen, N.C. & Garcia, L.A. & Arabi, M., 2012. "Improving evapotranspiration simulations in the CERES-Maize model under limited irrigation," Agricultural Water Management, Elsevier, vol. 115(C), pages 92-103.
    8. Gheysari, Mahdi & Sadeghi, Sayed-Hossein & Loescher, Henry W. & Amiri, Samia & Zareian, Mohammad Javad & Majidi, Mohammad M. & Asgarinia, Parvaneh & Payero, Jose O., 2017. "Comparison of deficit irrigation management strategies on root, plant growth and biomass productivity of silage maize," Agricultural Water Management, Elsevier, vol. 182(C), pages 126-138.
    9. Tolimir, Miodrag & Gajić, Boško & Kresović, Branka & Životić, Ljubomir & Gajić, Katarina & Brankov, Milan & Todorovic, Mladen, 2024. "Impact of deficit irrigation and planting density on grain yield and water productivity of maize grown under temperate continental climatic conditions," Agricultural Water Management, Elsevier, vol. 302(C).
    10. Serra-Wittling, Claire & Molle, Bruno & Cheviron, Bruno, 2019. "Plot level assessment of irrigation water savings due to the shift from sprinkler to localized irrigation systems or to the use of soil hydric status probes. Application in the French context," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    11. Gudeta Genemo & Habtamu Bedane & Eshetu Mekonen, . "On-farm evaluation of drip irrigation system on coffee production in Western Oromia, Ethiopia," International Journal of Agricultural Research, Innovation and Technology (IJARIT), IJARIT Research Foundation, vol. 13(01).
    12. O'Connor, Claire, 2013. "Soil Matters: How the Federal Crop Insurance Program should be reformed to encourage low-risk farming methods with high-reward environmental outcomes," 2013 AAEA: Crop Insurance and the Farm Bill Symposium 156789, Agricultural and Applied Economics Association.
    13. Nicole Costa Resende Ferreira & Jarbas Honorio Miranda, 2021. "Projected changes in corn crop productivity and profitability in Parana, Brazil," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(3), pages 3236-3250, March.
    14. Chen, Dali & Bao, Jinglong & Chen, Tao & Bai, Mengjie & Pan, Jia & Yuan, Haiying & Wang, Yanrong & Nan, Zhibiao & Hu, Xiaowen, 2024. "Effect of drip irrigation and boron application on enhancing seed production of sainfoin (Onobrychis viciifolia) in Northwest China," Agricultural Water Management, Elsevier, vol. 306(C).
    15. Dimitrios Loukatos & Athanasios Fragkos & George Kargas & Konstantinos G. Arvanitis, 2024. "Implementation and Evaluation of a Low-Cost Measurement Platform over LoRa and Applicability for Soil Monitoring," Future Internet, MDPI, vol. 16(12), pages 1-30, November.
    16. Miodrag Tolimir & Branka Kresović & Katarina Gajić & Violeta Anđelković & Milan Brankov & Marijana Dugalić & Boško Gajić, 2024. "Integrated effect of irrigation rate and plant density on yield, yield components and water use efficiency of maize," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 70(8), pages 475-482.
    17. Imran Ali Lakhiar & Haofang Yan & Chuan Zhang & Guoqing Wang & Bin He & Beibei Hao & Yujing Han & Biyu Wang & Rongxuan Bao & Tabinda Naz Syed & Junaid Nawaz Chauhdary & Md. Rakibuzzaman, 2024. "A Review of Precision Irrigation Water-Saving Technology under Changing Climate for Enhancing Water Use Efficiency, Crop Yield, and Environmental Footprints," Agriculture, MDPI, vol. 14(7), pages 1-40, July.
    18. Wang, Wendi & Straffelini, Eugenio & Tarolli, Paolo, 2023. "Steep-slope viticulture: The effectiveness of micro-water storage in improving the resilience to weather extremes," Agricultural Water Management, Elsevier, vol. 286(C).
    19. Murley, Cameron B. & Sharma, Sumit & Warren, Jason G. & Arnall, Daryl B. & Raun, William R., 2018. "Yield response of corn and grain sorghum to row offsets on subsurface drip laterals," Agricultural Water Management, Elsevier, vol. 208(C), pages 357-362.
    20. Ruiqi Zhang & Chunguang Hu & Yucheng Sun, 2024. "Decoding the Characteristics of Ecosystem Services and the Scale Effect in the Middle Reaches of the Yangtze River Urban Agglomeration: Insights for Planning and Management," Sustainability, MDPI, vol. 16(18), pages 1-26, September.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:16:p:7365-:d:1724639. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.