IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i16p7331-d1723906.html
   My bibliography  Save this article

Urbanization and Ecosystem Services Supply–Demand Mismatches Across Diverse Resource-Based Cities: Evidence from Sichuan, China

Author

Listed:
  • Tianwen Wang

    (School of Geographical Sciences, China West Normal University, Nanchong 637009, China
    Sichuan Provincial Engineering Laboratory of Monitoring and Control for Soil Erosion on Dry Valleys, China West Normal University, Nanchong 637009, China
    Institute of Jialing River Basin, China West Normal University, Nanchong 637009, China)

  • Mingliang Luo

    (School of Geographical Sciences, China West Normal University, Nanchong 637009, China
    Sichuan Provincial Engineering Laboratory of Monitoring and Control for Soil Erosion on Dry Valleys, China West Normal University, Nanchong 637009, China
    Institute of Jialing River Basin, China West Normal University, Nanchong 637009, China)

  • Leichao Bai

    (School of Geographical Sciences, China West Normal University, Nanchong 637009, China
    Sichuan Provincial Engineering Laboratory of Monitoring and Control for Soil Erosion on Dry Valleys, China West Normal University, Nanchong 637009, China
    Institute of Jialing River Basin, China West Normal University, Nanchong 637009, China)

  • Weijie Li

    (School of Geographical Sciences, China West Normal University, Nanchong 637009, China
    Sichuan Provincial Engineering Laboratory of Monitoring and Control for Soil Erosion on Dry Valleys, China West Normal University, Nanchong 637009, China
    Institute of Jialing River Basin, China West Normal University, Nanchong 637009, China)

Abstract

Resource-based cities, characterized by a prolonged dependence on resource extraction and persistent urban expansion, frequently exhibit significant imbalances between the supply and demand of ecosystem services (ESs). Understanding how various types of resource-based cities respond to urbanization in terms of ESs supply–demand relationships is crucial for advancing sustainable urban development. This study examines three representative resource-based cities in Sichuan Province—Nanchong (growing), Luzhou (declining), and Panzhihua (mature)—to analyze changes in six key ESs from 2000 to 2020, including soil retention, carbon sequestration, water yield, habitat quality, food production, and recreational services. Ordinary least squares (OLS) regression and random forest (RF) models were employed to evaluate the effects of gross domestic product (GDP) density, construction land proportion (CLP), and population (POP) density on the ecosystem service supply–demand ratio (ESDR), and to explore variations in sensitivity among these cities. The results demonstrate that (1) ESs’ supply–demand patterns differ significantly among the three city types. Nanchong exhibited a declining supply and increasing demand for regulating services; Luzhou displayed improvements in its water yield and recreational services but persistent degradation of habitat quality; and Panzhihua achieved notable gains in carbon sequestration and habitat quality. (2) Urbanization generally reduced the ESDR across all three cities. However, the GDP density positively influenced the ESDR in Nanchong, while the CLP and the POP density exerted widespread negative effects. In Luzhou, the ESDR was primarily constrained by the CLP, whereas in Panzhihua, both the CLP and the POP density significantly reduced the ratio. (3) The sensitivity analysis revealed distinct response patterns: Nanchong was most sensitive to CLP, Luzhou responded most strongly to GDP density, and Panzhihua was highly sensitive to both GDP density and POP density. These findings underscore the necessity of formulating city-type-specific development strategies—such as land restoration, population control, and industrial upgrading—tailored to different types of resource-based cities, in order to reconcile urbanization with ecosystem service dynamics, promote green transformation, and contribute to the achievement of the Sustainable Development Goals (SDGs).

Suggested Citation

  • Tianwen Wang & Mingliang Luo & Leichao Bai & Weijie Li, 2025. "Urbanization and Ecosystem Services Supply–Demand Mismatches Across Diverse Resource-Based Cities: Evidence from Sichuan, China," Sustainability, MDPI, vol. 17(16), pages 1-25, August.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:16:p:7331-:d:1723906
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/16/7331/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/16/7331/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Basu, Tirthankar & Das, Arijit, 2024. "Urbanization induced changes in land use dynamics and its nexus to ecosystem service values: A spatiotemporal investigation to promote sustainable urban growth," Land Use Policy, Elsevier, vol. 144(C).
    2. Huan Li & Yehua Dennis Wei & Yuemin Ning, 2016. "Spatial and Temporal Evolution of Urban Systems in China during Rapid Urbanization," Sustainability, MDPI, vol. 8(7), pages 1-17, July.
    3. Zhang, Zimo & Peng, Jian & Xu, Zihan & Wang, Xiaoyu & Meersmans, Jeroen, 2021. "Ecosystem services supply and demand response to urbanization: A case study of the Pearl River Delta, China," Ecosystem Services, Elsevier, vol. 49(C).
    4. Boyd, James & Banzhaf, Spencer, 2007. "What are ecosystem services? The need for standardized environmental accounting units," Ecological Economics, Elsevier, vol. 63(2-3), pages 616-626, August.
    5. Shuhui Zhang & Fuquan Li & Yuke Zhou & Ziyuan Hu & Ruixin Zhang & Xiaoyu Xiang & Yali Zhang, 2022. "Using Net Primary Productivity to Characterize the Spatio-Temporal Dynamics of Ecological Footprint for a Resource-Based City, Panzhihua in China," Sustainability, MDPI, vol. 14(5), pages 1-14, March.
    6. Yifan Xu & Yuepeng Liu & Qian Sun & Wei Qi, 2024. "Construction of Cultivated Land Ecological Network Based on Supply and Demand of Ecosystem Services and MCR Model: A Case Study of Shandong Province, China," Sustainability, MDPI, vol. 16(9), pages 1-14, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tao Huang & Xiaoling Yuan & Rang Liu, 2025. "Drivers of Green Transition Performance Differences in China’s Resource-Based Cities: A Carbon Reduction–Pollution Control–Greening–Growth Framework," Sustainability, MDPI, vol. 17(20), pages 1-31, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wei Shui & Kexin Wu & Yong Du & Haifeng Yang, 2021. "The Trade-Offs between Supply and Demand Dynamics of Ecosystem Services in the Bay Areas of Metropolitan Regions: A Case Study in Quanzhou, China," Land, MDPI, vol. 11(1), pages 1-15, December.
    2. Kubiszewski, Ida & Concollato, Luke & Costanza, Robert & Stern, David I., 2023. "Changes in authorship, networks, and research topics in ecosystem services," Ecosystem Services, Elsevier, vol. 59(C).
    3. Jansson, Åsa, 2013. "Reaching for a sustainable, resilient urban future using the lens of ecosystem services," Ecological Economics, Elsevier, vol. 86(C), pages 285-291.
    4. Li, Shuoshuo & Liu, Yaobin & Wei, Guoen & Bi, Mo & He, Bao-Jie, 2024. "Carbon surplus or carbon deficit under land use transformation in China?," Land Use Policy, Elsevier, vol. 143(C).
    5. Qenani-Petrela, Eivis & Noel, Jay E. & Mastin, Thomas, 2007. "A Benefit Transfer Approach to the Estimation of Agro-Ecosystems Services Benefits: A Case Study of Kern County, California," Research Project Reports 121605, California Polytechnic State University, San Luis Obispo, California Institute for the Study of Specialty Crops.
    6. Gerner, Nadine V. & Nafo, Issa & Winking, Caroline & Wencki, Kristina & Strehl, Clemens & Wortberg, Timo & Niemann, André & Anzaldua, Gerardo & Lago, Manuel & Birk, Sebastian, 2018. "Large-scale river restoration pays off: A case study of ecosystem service valuation for the Emscher restoration generation project," Ecosystem Services, Elsevier, vol. 30(PB), pages 327-338.
    7. Wang, Shifeng & Wang, Sicong & Smith, Pete, 2015. "Quantifying impacts of onshore wind farms on ecosystem services at local and global scales," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1424-1428.
    8. Ahmet Tolunay & Çağlar Başsüllü, 2015. "Willingness to Pay for Carbon Sequestration and Co-Benefits of Forests in Turkey," Sustainability, MDPI, vol. 7(3), pages 1-27, March.
    9. Diane P. Dupont, 2019. "Editorial: Special Issue in Honour of Dr. Steven Renzetti," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 5(02), pages 1-10, April.
    10. Chun-Chu Yeh & Cheng-Shen Lin & Chin-Huang Huang, 2018. "The Total Economic Value of Sport Tourism in Belt and Road Development—An Environmental Perspective," Sustainability, MDPI, vol. 10(4), pages 1-14, April.
    11. Pistorius, Till & Schaich, Harald & Winkel, Georg & Plieninger, Tobias & Bieling, Claudia & Konold, Werner & Volz, Karl-Reinhard, 2012. "Lessons for REDDplus: A comparative analysis of the German discourse on forest functions and the global ecosystem services debate," Forest Policy and Economics, Elsevier, vol. 18(C), pages 4-12.
    12. Kosoy, Nicolás & Corbera, Esteve, 2010. "Payments for ecosystem services as commodity fetishism," Ecological Economics, Elsevier, vol. 69(6), pages 1228-1236, April.
    13. Caoxin Chen & Shiyi Wang & Meixi Liu & Ke Huang & Qiuyi Guo & Wei Xie & Jiangjun Wan, 2025. "Beyond Linearity: Uncovering the Complex Spatiotemporal Drivers of New-Type Urbanization and Eco-Environmental Resilience Coupling in China’s Chengdu–Chongqing Economic Circle with Machine Learning," Land, MDPI, vol. 14(7), pages 1-29, July.
    14. Braat, Leon C. & de Groot, Rudolf, 2012. "The ecosystem services agenda:bridging the worlds of natural science and economics, conservation and development, and public and private policy," Ecosystem Services, Elsevier, vol. 1(1), pages 4-15.
    15. Indre Siksnelyte-Butkiene & Dalia Streimikiene & Giulio Paolo Agnusdei & Tomas Balezentis, 2023. "Energy-space concept for the transition to a low-carbon energy society," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(12), pages 14953-14973, December.
    16. McVittie, Alistair & Norton, Lisa & Martin-Ortega, Julia & Siameti, Ioanna & Glenk, Klaus & Aalders, Inge, 2015. "Operationalizing an ecosystem services-based approach using Bayesian Belief Networks: An application to riparian buffer strips," Ecological Economics, Elsevier, vol. 110(C), pages 15-27.
    17. Hua Liu & Dan-Yang Li & Rong Ma & Ming Ma, 2022. "Assessing the Ecological Risks Based on the Three-Dimensional Ecological Footprint Model in Gansu Province," Sustainability, MDPI, vol. 14(24), pages 1-19, December.
    18. Bachev, Hrabrin, 2009. "Governing of agro-ecosystem services - modes, efficiency, perspectives," MPRA Paper 99870, University Library of Munich, Germany.
    19. Warnell, Katherine J.D. & Russell, Marc & Rhodes, Charles & Bagstad, Kenneth J. & Olander, Lydia P. & Nowak, David J. & Poudel, Rajendra & Glynn, Pierre D. & Hass, Julie L. & Hirabayashi, Satoshi & In, 2020. "Testing ecosystem accounting in the United States: A case study for the Southeast," Ecosystem Services, Elsevier, vol. 43(C).
    20. Karin Andrea Wigger & Dean A. Shepherd, 2020. "We’re All in the Same Boat: A Collective Model of Preserving and Accessing Nature-Based Opportunities," Entrepreneurship Theory and Practice, , vol. 44(3), pages 587-617, May.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:16:p:7331-:d:1723906. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.