Author
Listed:
- Xin Ma
(School of Information and Electrical Engineering, Shandong Jianzhu University, Jinan 250101, China)
- Yubing Liu
(School of Information and Electrical Engineering, Shandong Jianzhu University, Jinan 250101, China)
- Chongyi Tian
(School of Information and Electrical Engineering, Shandong Jianzhu University, Jinan 250101, China)
- Bo Peng
(School of Information and Electrical Engineering, Shandong Jianzhu University, Jinan 250101, China)
Abstract
Amid rising load volatility and uncertainty, demand-side resources with regulation capabilities are increasingly engaged at scale in ancillary service markets, facilitating sustainable peak load mitigation and alleviating grid stress while reducing reliance on carbon-intensive peaking plants. This study examines the integration of electric vehicles (EVs) in peak regulation, proposing a multi-stage operational strategy framework grounded in the analysis of EV power and energy response constraints to promote both economic efficiency and environmental sustainability. The model holistically accounts for temporal charging and discharging behaviors under diverse incentive mechanisms, incorporating user response heterogeneity alongside multi-period market peak regulation demands while supporting clean transportation adoption. An optimization model is formulated to maximize aggregator revenue while enhancing grid sustainability and is solved via MATLAB(2021b) and CPLEX(20.1.0). The simulation outcomes reveal that the discharge-based demand response (DBDR) strategy elevates aggregator revenue by 42.6% and enhances peak regulation margins by 19.2% relative to the conventional charge-based demand response (CBDR). The hybridization of CBDR and DBDR yields a threefold revenue increase and a 28.7% improvement in peak regulation capacity, underscoring the efficacy of a joint-response approach in augmenting economic returns, grid flexibility, and sustainable energy management.
Suggested Citation
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:16:p:7315-:d:1723546. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.